IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i9p1607-1628.html
   My bibliography  Save this article

Almost sure central limit theorems on the Wiener space

Author

Listed:
  • Bercu, Bernard
  • Nourdin, Ivan
  • Taqqu, Murad S.

Abstract

In this paper, we study almost sure central limit theorems for sequences of functionals of general Gaussian fields. We apply our result to non-linear functions of stationary Gaussian sequences. We obtain almost sure central limit theorems for these non-linear functions when they converge in law to a normal distribution.

Suggested Citation

  • Bercu, Bernard & Nourdin, Ivan & Taqqu, Murad S., 2010. "Almost sure central limit theorems on the Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1607-1628, August.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1607-1628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00127-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berkes, István & Csáki, Endre, 2001. "A universal result in almost sure central limit theory," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 105-134, July.
    2. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    3. Ibragimov, Ildar & Lifshits, Mikhail, 1998. "On the convergence of generalized moments in almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 343-351, November.
    4. Lacey, Michael T. & Philipp, Walter, 1990. "A note on the almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 201-205, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Azmoodeh & Yuliya Mishura & Farzad Sabzikar, 2022. "How Does Tempering Affect the Local and Global Properties of Fractional Brownian Motion?," Journal of Theoretical Probability, Springer, vol. 35(1), pages 484-527, March.
    2. Zheng, Guangqu, 2017. "Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1622-1636.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
    2. Xu, Feng & Wu, Qunying, 2017. "Almost sure central limit theorem for self-normalized partial sums of ρ−-mixing sequences," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 17-27.
    3. Wu, Qunying, 2011. "Almost sure limit theorems for stable distributions," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 662-672, June.
    4. Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
    5. Holzmann, Hajo & Koch, Susanne & Min, Aleksey, 2004. "Almost sure limit theorems for U-statistics," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 261-269, September.
    6. István Fazekas & Alexey Chuprunov, 2007. "An Almost Sure Functional Limit Theorem for the Domain of Geometric Partial Attraction of Semistable Laws," Journal of Theoretical Probability, Springer, vol. 20(2), pages 339-353, June.
    7. Berkes, István, 2001. "The law of large numbers with exceptional sets," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 431-438, December.
    8. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    9. István Berkes & Siegfried Hörmann & Lajos Horváth, 2010. "On Functional Versions of the Arc-Sine Law," Journal of Theoretical Probability, Springer, vol. 23(1), pages 109-126, March.
    10. Zhicheng Chen & Hongyun Zhang & Xinsheng Liu, 2020. "Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences," Mathematics, MDPI, vol. 8(4), pages 1-11, April.
    11. Tabacu, Lucia & Ledbetter, Mark, 2019. "Change-point analysis using logarithmic quantile estimation," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 94-100.
    12. Siegfried Hörmann, 2007. "Critical Behavior in Almost Sure Central Limit Theory," Journal of Theoretical Probability, Springer, vol. 20(3), pages 613-636, September.
    13. Denker, Manfred & Zheng, Xiaofei, 2018. "On the local times of stationary processes with conditional local limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2448-2462.
    14. Li, Jingyu & Zhang, Yong, 2021. "An almost sure central limit theorem for the stochastic heat equation," Statistics & Probability Letters, Elsevier, vol. 177(C).
    15. Zuoxiang Peng & Zhongquan Tan & Saralees Nadarajah, 2011. "Almost sure central limit theorem for the products of U-statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 61-76, January.
    16. Hörmann, Siegfried, 2006. "An extension of almost sure central limit theory," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 191-202, January.
    17. Tan, Zhongquan & Peng, Zuoxiang, 2009. "Almost sure convergence for non-stationary random sequences," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 857-863, April.
    18. Giuliano-Antonini, R. & Weber, M., 2008. "The theta-dependence coefficient and an Almost Sure Limit Theorem for random iterative models," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 564-575, April.
    19. Chen, Shouquan & Lin, Zhengyan, 2008. "Almost sure functional central limit theorems for weakly dependent sequences," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1683-1693, September.
    20. Panga, Zacarias & Pereira, Luísa, 2019. "On the almost sure convergence for the joint version of maxima and minima of stationary sequences," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1607-1628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.