How Does Tempering Affect the Local and Global Properties of Fractional Brownian Motion?
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-020-01068-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mark M. Meerschaert & Farzad Sabzikar, 2016. "Tempered Fractional Stable Motion," Journal of Theoretical Probability, Springer, vol. 29(2), pages 681-706, June.
- Harms, Philipp & Stefanovits, David, 2019. "Affine representations of fractional processes with applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1185-1228.
- Bercu, Bernard & Nourdin, Ivan & Taqqu, Murad S., 2010. "Almost sure central limit theorems on the Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1607-1628, August.
- Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
- Sabzikar, Farzad & Surgailis, Donatas, 2018. "Tempered fractional Brownian and stable motions of second kind," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 17-27.
- Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
- Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
- Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107039124, September.
- Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107611986, September.
- Pipiras,Vladas & Taqqu,Murad S., 2017. "Long-Range Dependence and Self-Similarity," Cambridge Books, Cambridge University Press, number 9781107039469, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
- Ivan Nourdin & Giovanni Peccati & Xiaochuan Yang, 2022. "Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2020-2037, September.
- Ernst, Philip A. & Huang, Dongzhou & Viens, Frederi G., 2023. "Yule’s “nonsense correlation” for Gaussian random walks," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 423-455.
- Hiroaki Hata & Nien-Lin Liu & Kazuhiro Yasuda, 2022. "Expressions of forward starting option price in Hull–White stochastic volatility model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 101-135, June.
- Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
- Ji Huang, 2023. "A Probabilistic Solution to High-Dimensional Continuous-Time Macro and Finance Models," CESifo Working Paper Series 10600, CESifo.
- Nourdin, Ivan & Pu, Fei, 2022. "Gaussian fluctuation for Gaussian Wishart matrices of overall correlation," Statistics & Probability Letters, Elsevier, vol. 181(C).
- Mauricio Elizalde & Carlos Escudero & Tomoyuki Ichiba, 2022. "Optimal investment with insider information using Skorokhod & Russo-Vallois integration," Papers 2211.07471, arXiv.org, revised Dec 2024.
- Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of Inverse options under stochastic volatility models," Papers 2401.00539, arXiv.org, revised Sep 2024.
- Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
- Masahiro Handa & Noriyoshi Sakuma & Ryoichi Suzuki, 2024. "A Girsanov transformed Clark-Ocone-Haussmann type formula for $$L^1$$ L 1 -pure jump additive processes and its application to portfolio optimization," Annals of Finance, Springer, vol. 20(3), pages 329-352, September.
- Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
- Fenge Chen & Bing Li & Xingchun Peng, 2022. "Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 635-659, June.
- Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2022. "On the implied volatility of Asian options under stochastic volatility models," Papers 2208.01353, arXiv.org, revised Mar 2024.
- Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of European and Asian call options under the stochastic volatility Bachelier model," Papers 2308.15341, arXiv.org, revised Sep 2024.
- Johann Gehringer & Xue-Mei Li, 2022. "Functional Limit Theorems for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(1), pages 426-456, March.
- Chen, Xingzhi & Xu, Xin & Tian, Baodan & Li, Dong & Yang, Dan, 2022. "Dynamics of a stochastic delayed chemostat model with nutrient storage and Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Obayda Assaad & Ciprian A. Tudor, 2020. "Parameter identification for the Hermite Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 251-270, July.
- Azmoodeh, Ehsan & Ljungdahl, Mathias Mørck & Thäle, Christoph, 2022. "Multi-dimensional normal approximation of heavy-tailed moving averages," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 308-334.
- Kohatsu-Higa, Arturo & Nualart, Eulalia & Tran, Ngoc Khue, 2022. "Density estimates for jump diffusion processes," Applied Mathematics and Computation, Elsevier, vol. 420(C).
More about this item
Keywords
Fractional Brownian motion; Tempered fractional processes; Semi-long memory; Breuer–Major theorem; Limit theorems; Malliavin calculus;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01068-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.