My bibliography
Save this item
Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haikonen, Turo & Tuomaala, Mari & Holmberg, Henrik & Ahtila, Pekka, 2013. "Evaluating municipal energy efficiency in biorefinery integration," Energy, Elsevier, vol. 63(C), pages 260-267.
- Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
- Hagos, Ftwi Yohaness & A. Aziz, A. Rashid & Sulaiman, Shaharin A., 2015. "Methane enrichment of syngas (H2/CO) in a spark-ignition direct-injection engine: Combustion, performance and emissions comparison with syngas and Compressed Natural Gas," Energy, Elsevier, vol. 90(P2), pages 2006-2015.
- Samavati, Mahrokh & Santarelli, Massimo & Martin, Andrew & Nemanova, Vera, 2017. "Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production," Energy, Elsevier, vol. 122(C), pages 37-49.
- Mahmood, Asif & Bano, Saira & Yu, Ji Haeng & Lee, Kew-Ho, 2015. "High-performance solid oxide electrolysis cell based on ScSZ/GDC (scandia-stabilized zirconia/gadolinium-doped ceria) bi-layered electrolyte and LSCF (lanthanum strontium cobalt ferrite) oxygen electr," Energy, Elsevier, vol. 90(P1), pages 344-350.
- Andika, Riezqa & Nandiyanto, Asep Bayu Dani & Putra, Zulfan Adi & Bilad, Muhammad Roil & Kim, Young & Yun, Choa Mun & Lee, Moonyong, 2018. "Co-electrolysis for power-to-methanol applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 227-241.
- Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
- Stempien, Jan Pawel & Sun, Qiang & Chan, Siew Hwa, 2013. "Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions," Energy, Elsevier, vol. 55(C), pages 647-657.
- Ali, Shahid & Sørensen, Kim & Nielsen, Mads P., 2020. "Modeling a novel combined solid oxide electrolysis cell (SOEC) - Biomass gasification renewable methanol production system," Renewable Energy, Elsevier, vol. 154(C), pages 1025-1034.
- Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
- Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
- Qin, Shiyue & Zhang, Xuzhi & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2021. "Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis," Energy, Elsevier, vol. 229(C).
- Yang, Chao & Jing, Xiuhui & Miao, He & Wu, Yu & Shu, Chen & Wang, Jiatang & Zhang, Houcheng & Yu, Guojun & Yuan, Jinliang, 2020. "Analysis of effects of meso-scale reactions on multiphysics transport processes in rSOFC fueled with syngas," Energy, Elsevier, vol. 190(C).
- Helgeson, Broghan & Peter, Jakob, 2020.
"The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model,"
Applied Energy, Elsevier, vol. 262(C).
- Helgeson, Broghan & Peter, Jakob, 2019. "The Role of Electricity in Decarbonizing European Road Transport – Development and Assessment of an Integrated Multi-Sectoral Model," EWI Working Papers 2019-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 28 Jan 2019.
- Herz, Gregor & Rix, Christopher & Jacobasch, Eric & Müller, Nils & Reichelt, Erik & Jahn, Matthias & Michaelis, Alexander, 2021. "Economic assessment of Power-to-Liquid processes – Influence of electrolysis technology and operating conditions," Applied Energy, Elsevier, vol. 292(C).
- Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
- Qi, Huiying & Zhang, Junfeng & Tu, Baofeng & Yin, Yanxia & Zhang, Tonghuan & Liu, Di & Zhang, Fujun & Su, Xin & Cui, Daan & Cheng, Mojie, 2022. "Extreme management strategy and thermodynamic analysis of high temperature H2O/CO2 co-electrolysis for energy conversion," Renewable Energy, Elsevier, vol. 183(C), pages 229-241.
- Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
- Qin, Shiyue & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2022. "Opportunities for renewable electricity utilization in coal to liquid fuels process: Thermodynamic and techo-economic analysis," Energy, Elsevier, vol. 239(PA).
- Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2018. "Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons," Applied Energy, Elsevier, vol. 215(C), pages 309-320.
- Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
- Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
- Barelli, L. & Bidini, G. & Ottaviano, A., 2015. "Hydromethane generation through SOE (solid oxide electrolyser): Advantages of H2O–CO2 co-electrolysis," Energy, Elsevier, vol. 90(P1), pages 1180-1191.
- Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
- Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
- Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
- Decker, Maximilian & Schorn, Felix & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2019. "Off-grid power-to-fuel systems for a market launch scenario – A techno-economic assessment," Applied Energy, Elsevier, vol. 250(C), pages 1099-1109.
- Lambert, Jerry & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2023. "Evaluation of sector-coupled energy systems using different foresight horizons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
- Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
- Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes," Energy, Elsevier, vol. 81(C), pages 682-690.
- König, Daniel H. & Baucks, Nadine & Dietrich, Ralph-Uwe & Wörner, Antje, 2015. "Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2," Energy, Elsevier, vol. 91(C), pages 833-841.
- Mesfun, Sennai & Sanchez, Daniel L. & Leduc, Sylvain & Wetterlund, Elisabeth & Lundgren, Joakim & Biberacher, Markus & Kraxner, Florian, 2017. "Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region," Renewable Energy, Elsevier, vol. 107(C), pages 361-372.
- Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
- Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: A thermodynamic assessment," Energy, Elsevier, vol. 82(C), pages 714-721.
- Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
- Guerra, L. & Gomes, J. & Puna, J. & Rodrigues, J., 2015. "Preliminary study of synthesis gas production from water electrolysis, using the ELECTROFUEL® concept," Energy, Elsevier, vol. 89(C), pages 1050-1056.
- Mahrokh Samavati & Andrew Martin & Massimo Santarelli & Vera Nemanova, 2018. "Synthetic Diesel Production as a Form of Renewable Energy Storage," Energies, MDPI, vol. 11(5), pages 1-21, May.
- Estefania Vega Puga & Gkiokchan Moumin & Nicole Carina Neumann & Martin Roeb & Armin Ardone & Christian Sattler, 2022. "Holistic View on Synthetic Natural Gas Production: A Technical, Economic and Environmental Analysis," Energies, MDPI, vol. 15(5), pages 1-27, February.
- Simon Pratschner & Martin Hammerschmid & Florian J. Müller & Stefan Müller & Franz Winter, 2022. "Simulation of a Pilot Scale Power-to-Liquid Plant Producing Synthetic Fuel and Wax by Combining Fischer–Tropsch Synthesis and SOEC," Energies, MDPI, vol. 15(11), pages 1-22, June.
- Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
- Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
- Albrecht, Friedemann Georg & Nguyen, Tuong-Van, 2020. "Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis," Energy, Elsevier, vol. 192(C).
- Zohdi-Fasaei, Hossein & Atashi, Hossein & Farshchi Tabrizi, Farshad & Mirzaei, Ali Akbar, 2017. "Modeling and optimization of Fischer-Tropsch synthesis over Co-Mn-Ce/SiO2 catalyst using hybrid RSM/LHHW approaches," Energy, Elsevier, vol. 128(C), pages 496-508.
- Paolo Di Giorgio & Umberto Desideri, 2016. "Potential of Reversible Solid Oxide Cells as Electricity Storage System," Energies, MDPI, vol. 9(8), pages 1-14, August.
- Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
- Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
- Mehran, Muhammad Taqi & Yu, Seong-Bin & Lee, Dong-Young & Hong, Jong-Eun & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun & Lim, Tak-Hyoung, 2018. "Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells," Applied Energy, Elsevier, vol. 212(C), pages 759-770.