My bibliography
Save this item
Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
- Georg Jäger & Christian Hofer & Manfred Füllsack, 2019. "The Benefits of Randomly Delayed Charging of Electric Vehicles," Sustainability, MDPI, vol. 11(13), pages 1-11, July.
- Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
- Turner, Karen & Alabi, Oluwafisayo & Smith, Martin & Irvine, John & Dodds, Paul E., 2018.
"Framing policy on low emissions vehicles in terms of economic gains: Might the most straightforward gain be delivered by supply chain activity to support refuelling?,"
Energy Policy, Elsevier, vol. 119(C), pages 528-534.
- Alabi Oluwafisayo & Martin Smith & John Irvine & Karen Turner, 2018. "Framing policy on low emissions vehicles in terms of economic gains: might the most straightforward gain be delivered by supply chain activity to support refuelling?," Working Papers 1801, University of Strathclyde Business School, Department of Economics.
- Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
- Traut, Elizabeth & Hendrickson, Chris & Klampfl, Erica & Liu, Yimin & Michalek, Jeremy J., 2012. "Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost," Energy Policy, Elsevier, vol. 51(C), pages 524-534.
- Özdemir, Enver Doruk & Hartmann, Niklas, 2012. "Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs," Energy Policy, Elsevier, vol. 46(C), pages 185-192.
- Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Fleet view of electrified transportation reveals smaller potential to reduce GHG emissions," Applied Energy, Elsevier, vol. 138(C), pages 393-403.
- Ramakrishnan, R. & Hiremath, Somashekhar S. & Singaperumal, M., 2014. "Design strategy for improving the energy efficiency in series hydraulic/electric synergy system," Energy, Elsevier, vol. 67(C), pages 422-434.
- Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
- Jaramillo, Paulina & Samaras, Constantine & Wakeley, Heather & Meisterling, Kyle, 2009. "Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways," Energy Policy, Elsevier, vol. 37(7), pages 2689-2695, July.
- Erica L. Plambeck, 2013. "OM Forum —Operations Management Challenges for Some “Cleantech” Firms," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 527-536, October.
- Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
- Zheng Chen & Ningyuan Guo & Xiaoyu Li & Jiangwei Shen & Renxin Xiao & Siqi Li, 2017. "Battery Pack Grouping and Capacity Improvement for Electric Vehicles Based on a Genetic Algorithm," Energies, MDPI, vol. 10(4), pages 1-15, March.
- Yabe, Kuniaki & Shinoda, Yukio & Seki, Tomomichi & Tanaka, Hideo & Akisawa, Atsushi, 2012. "Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan," Energy Policy, Elsevier, vol. 45(C), pages 529-540.
- Björnsson, Lars-Henrik & Karlsson, Sten, 2015. "Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability," Applied Energy, Elsevier, vol. 143(C), pages 336-347.
- Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 103(C), pages 488-506.
- Katrašnik, Tomaž, 2013. "Impact of vehicle propulsion electrification on Well-to-Wheel CO2 emissions of a medium duty truck," Applied Energy, Elsevier, vol. 108(C), pages 236-247.
- Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
- Ravi Shankar & James Marco & Francis Assadian, 2012. "The Novel Application of Optimization and Charge Blended Energy Management Control for Component Downsizing within a Plug-in Hybrid Electric Vehicle," Energies, MDPI, vol. 5(12), pages 1-32, November.
- Amela Ajanovic & Reinhard Haas, 2018. "Electric vehicles: solution or new problem?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 7-22, December.
- Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
- Tan, Ruipeng & Lin, Boqiang, 2019. "Public perception of new energy vehicles: Evidence from willingness to pay for new energy bus fares in China," Energy Policy, Elsevier, vol. 130(C), pages 347-354.
- Yuan, Xinmei & Li, Lili & Gou, Huadong & Dong, Tingting, 2015. "Energy and environmental impact of battery electric vehicle range in China," Applied Energy, Elsevier, vol. 157(C), pages 75-84.
- Skerlos, Steven J. & Winebrake, James J., 2010. "Targeting plug-in hybrid electric vehicle policies to increase social benefits," Energy Policy, Elsevier, vol. 38(2), pages 705-708, February.
- Tuttle, David P. & Kockelman, Kara M., 2012. "Electrified Vehicle Technology Trends, Infrastructure Implications, and Cost Comparisons," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 51(1).
- Yong Zhang & Miner Zhong & Nana Geng & Yunjian Jiang, 2017. "Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-15, May.
- Wang, Bing & Kocaoglu, Dundar F. & Daim, Tugrul U. & Yang, Jiting, 2010. "A decision model for energy resource selection in China," Energy Policy, Elsevier, vol. 38(11), pages 7130-7141, November.
- Arslan, Okan & Yıldız, Barış & Ekin Karaşan, Oya, 2014. "Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips," Energy Policy, Elsevier, vol. 74(C), pages 168-178.
- Al-Alawi, Baha M. & Bradley, Thomas H., 2014. "Analysis of corporate average fuel economy regulation compliance scenarios inclusive of plug in hybrid vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1323-1337.
- Guo, Xueyi & Zhang, Jingxi & Tian, Qinghua, 2021. "Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Uwe Sauer, Dirk & Eckstein, Lutz, 2011. "Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany," Energy Policy, Elsevier, vol. 39(10), pages 5871-5882, October.
- Muratori, Matteo & Moran, Michael J. & Serra, Emmanuele & Rizzoni, Giorgio, 2013. "Highly-resolved modeling of personal transportation energy consumption in the United States," Energy, Elsevier, vol. 58(C), pages 168-177.
- Fleming, Evan & Wen, Shaoyi & Shi, Li & da Silva, Alexandre K., 2013. "Thermodynamic model of a thermal storage air conditioning system with dynamic behavior," Applied Energy, Elsevier, vol. 112(C), pages 160-169.
- Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
- Sofia, Daniele & Gioiella, Filomena & Lotrecchiano, Nicoletta & Giuliano, Aristide, 2020. "Cost-benefit analysis to support decarbonization scenario for 2030: A case study in Italy," Energy Policy, Elsevier, vol. 137(C).
- Shabashevich, A. & Richards, N. & Hwang, J. & Erickson, P.A., 2015. "Analysis of powertrain design on effective waste heat recovery from conventional and hybrid electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 754-761.
- Lin Gao & Zach C. Winfield, 2012. "Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles," Energies, MDPI, vol. 5(3), pages 1-16, March.
- Ji, Wei, 2018. "Data-Driven Behavior Analysis and Implications in Plug-in Electric Vehicle Policy Studies," Institute of Transportation Studies, Working Paper Series qt6dw4d18t, Institute of Transportation Studies, UC Davis.
- Redelbach, Martin & Özdemir, Enver Doruk & Friedrich, Horst E., 2014. "Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types," Energy Policy, Elsevier, vol. 73(C), pages 158-168.
- Amjad, Shaik & Rudramoorthy, R. & Neelakrishnan, S. & Sri Raja Varman, K. & Arjunan, T.V., 2011. "Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler," Energy, Elsevier, vol. 36(3), pages 1623-1629.
- Azadfar, Elham & Sreeram, Victor & Harries, David, 2015. "The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1065-1076.
- Huang, Shisheng & Hodge, Bri-Mathias S. & Taheripour, Farzad & Pekny, Joseph F. & Reklaitis, Gintaras V. & Tyner, Wallace E., 2011. "The effects of electricity pricing on PHEV competitiveness," Energy Policy, Elsevier, vol. 39(3), pages 1552-1561, March.
- Amjad, Shaik & Rudramoorthy, R. & Sadagopan, P. & Neelakrishnan, S., 2016. "Implementation and evaluation of change-over speed in plug-in hybrid electric two wheeler," Energy, Elsevier, vol. 109(C), pages 858-865.
- Karabasoglu, Orkun & Michalek, Jeremy, 2013. "Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains," Energy Policy, Elsevier, vol. 60(C), pages 445-461.
- Kim, Jae D. & Rahimi, Mansour, 2014. "Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions," Energy Policy, Elsevier, vol. 73(C), pages 620-630.
- Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.
- Bi, Zicheng & Song, Lingjun & De Kleine, Robert & Mi, Chunting Chris & Keoleian, Gregory A., 2015. "Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system," Applied Energy, Elsevier, vol. 146(C), pages 11-19.