IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v73y2014icp620-630.html
   My bibliography  Save this article

Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions

Author

Listed:
  • Kim, Jae D.
  • Rahimi, Mansour

Abstract

Using plug-in electric vehicles (PEVs) has become an important component of greenhouse gas (GHG) emissions reduction strategy in the transportation sector. Assessing the net effect of PEVs on GHG emissions, however, is dependent on factors such as type and scale of electricity generation sources, adoption rate, and charging behavior. This study creates a comprehensive model that estimates the energy load and GHG emissions impacts for the years 2020 and 2030 for the city of Los Angeles. For 2020, model simulations show that the PEV charging loads will be modest with negligible effects on the overall system load profile. Contrary to previous study results, the average marginal carbon intensity is higher if PEV charging occurs during off-peak hours. These results suggest that current economic incentives to encourage off-peak charging result in greater GHG emissions. Model simulations for 2030 show that PEV charging loads increase significantly resulting in potential generation shortages. There are also significant grid operation challenges as the region׳s energy grid is required to ramp up and down rapidly to meet PEV loads. For 2030, the average marginal carbon intensity for off-peak charging becomes lower than peak charging mainly due to the removal of coal from the power generation portfolio.

Suggested Citation

  • Kim, Jae D. & Rahimi, Mansour, 2014. "Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions," Energy Policy, Elsevier, vol. 73(C), pages 620-630.
  • Handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:620-630
    DOI: 10.1016/j.enpol.2014.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514003760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    2. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Bandivadekar, Anup & Cheah, Lynette & Evans, Christopher & Groode, Tiffany & Heywood, John & Kasseris, Emmanuel & Kromer, Matthew & Weiss, Malcolm, 2008. "Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet," Energy Policy, Elsevier, vol. 36(7), pages 2754-2760, July.
    5. Yang, Christopher & McCollum, David L & McCarthy, Ryan & Leighty, Wayne, 2009. "Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California," Institute of Transportation Studies, Working Paper Series qt2ns1q98f, Institute of Transportation Studies, UC Davis.
    6. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    7. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    8. Li, Kang & Lloyd, Bob & Liang, Xiao-Jie & Wei, Yi-Ming, 2014. "Energy poor or fuel poor: What are the differences?," Energy Policy, Elsevier, vol. 68(C), pages 476-481.
    9. McCollum, David & Yang, Christopher, 2009. "Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5580-5596, December.
    10. Wang, Y.F. & Li, K.P. & Xu, X.M. & Zhang, Y.R., 2014. "Transport energy consumption and saving in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 641-655.
    11. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    12. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
    13. anonymous, 2014. "Noteworthy: energy, health insurance, federal taxes," Southwest Economy, Federal Reserve Bank of Dallas, issue Q1, pages 14-14.
    14. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    15. Li, J.S. & Chen, G.Q. & Wu, X.F. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2014. "Embodied energy assessment for Macao׳s external trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 642-653.
    16. Wang, Qiang, 2014. "Effects of urbanisation on energy consumption in China," Energy Policy, Elsevier, vol. 65(C), pages 332-339.
    17. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    2. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
    3. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    4. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    5. Adedamola Adepetu & Srinivasan Keshav, 2017. "The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study," Transportation, Springer, vol. 44(2), pages 353-373, March.
    6. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    7. Kim, Jae D., 2019. "Insights into residential EV charging behavior using energy meter data," Energy Policy, Elsevier, vol. 129(C), pages 610-618.
    8. Bedir, Abdulkadir, 2015. "Integrating Plug-in Electric Vehicles into California’s Grid System: Policy Entrepreneurship and Technical Challenges," Institute of Transportation Studies, Working Paper Series qt48w9z0jr, Institute of Transportation Studies, UC Davis.
    9. Jenn, Alan, 2023. "Emissions of electric vehicles in California’s transition to carbon neutrality," Applied Energy, Elsevier, vol. 339(C).
    10. Tu, Ran & Gai, Yijun (Jessie) & Farooq, Bilal & Posen, Daniel & Hatzopoulou, Marianne, 2020. "Electric vehicle charging optimization to minimize marginal greenhouse gas emissions from power generation," Applied Energy, Elsevier, vol. 277(C).
    11. Nicole A. Ryan & Jeremiah X. Johnson & Gregory A. Keoleian & Geoffrey M. Lewis, 2018. "Decision Support Algorithm for Evaluating Carbon Dioxide Emissions from Electricity Generation in the United States," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1318-1330, December.
    12. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
    13. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamp, Linda M. & Vanheule, Lynn F.I., 2015. "Review of the small wind turbine sector in Kenya: Status and bottlenecks for growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 470-480.
    2. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    3. De Silva, P.N.K. & Simons, S.J.R. & Stevens, P., 2016. "Economic impact analysis of natural gas development and the policy implications," Energy Policy, Elsevier, vol. 88(C), pages 639-651.
    4. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    5. Yang, Christopher, 2013. "Fuel electricity and plug-in electric vehicles in a low carbon fuel standard," Energy Policy, Elsevier, vol. 56(C), pages 51-62.
    6. Kim, Jae D., 2019. "Insights into residential EV charging behavior using energy meter data," Energy Policy, Elsevier, vol. 129(C), pages 610-618.
    7. Melville, Emilia & Christie, Ian & Burningham, Kate & Way, Celia & Hampshire, Phil, 2017. "The electric commons: A qualitative study of community accountability," Energy Policy, Elsevier, vol. 106(C), pages 12-21.
    8. Bastani, Parisa & Heywood, John B. & Hope, Chris, 2012. "The effect of uncertainty on US transport-related GHG emissions and fuel consumption out to 2050," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 517-548.
    9. Tongsopit, Sopitsuda & Kittner, Noah & Chang, Youngho & Aksornkij, Apinya & Wangjiraniran, Weerin, 2016. "Energy security in ASEAN: A quantitative approach for sustainable energy policy," Energy Policy, Elsevier, vol. 90(C), pages 60-72.
    10. Arslan, Okan & Yıldız, Barış & Ekin Karaşan, Oya, 2014. "Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips," Energy Policy, Elsevier, vol. 74(C), pages 168-178.
    11. Connor, Linda H., 2016. "Energy futures, state planning policies and coal mine contests in rural New South Wales," Energy Policy, Elsevier, vol. 99(C), pages 233-241.
    12. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    13. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    14. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    15. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    16. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    17. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    18. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    19. Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.
    20. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:620-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.