IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v94y2012icp395-405.html
   My bibliography  Save this article

Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

Author

Listed:
  • Kelly, Jarod C.
  • MacDonald, Jason S.
  • Keoleian, Gregory A.

Abstract

Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4kWh useable battery (approximately a 42mile [68km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across charging scenarios and demographics show a varying effect on summertime peak load, which can be useful for PHEV market segmentation and electric utility planning.

Suggested Citation

  • Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
  • Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:395-405
    DOI: 10.1016/j.apenergy.2012.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramteen Sioshansi & Paul Denholm, 2010. "The Value of Plug-In Hybrid Electric Vehicles as Grid Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-24.
    2. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    3. Sioshansi, Ramteen & Fagiani, Riccardo & Marano, Vincenzo, 2010. "Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system," Energy Policy, Elsevier, vol. 38(11), pages 6703-6712, November.
    4. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    5. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nurre, Sarah G. & Bent, Russell & Pan, Feng & Sharkey, Thomas C., 2014. "Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid," Energy Policy, Elsevier, vol. 67(C), pages 364-377.
    2. Spiller, Elisheba & Sopher, Peter & Martin, Nicholas & Mirzatuny, Marita & Zhang, Xinxing, 2017. "The environmental impacts of green technologies in TX," Energy Economics, Elsevier, vol. 68(C), pages 199-214.
    3. Arslan, Okan & Yıldız, Barış & Ekin Karaşan, Oya, 2014. "Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips," Energy Policy, Elsevier, vol. 74(C), pages 168-178.
    4. Madzharov, D. & Delarue, E. & D'haeseleer, W., 2014. "Integrating electric vehicles as flexible load in unit commitment modeling," Energy, Elsevier, vol. 65(C), pages 285-294.
    5. Kim, Jae D. & Rahimi, Mansour, 2014. "Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions," Energy Policy, Elsevier, vol. 73(C), pages 620-630.
    6. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    7. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    8. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    9. Traut, Elizabeth & Hendrickson, Chris & Klampfl, Erica & Liu, Yimin & Michalek, Jeremy J., 2012. "Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost," Energy Policy, Elsevier, vol. 51(C), pages 524-534.
    10. Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Uwe Sauer, Dirk & Eckstein, Lutz, 2011. "Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany," Energy Policy, Elsevier, vol. 39(10), pages 5871-5882, October.
    11. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    12. Wu, Di & Aliprantis, Dionysios C., 2013. "Modeling light-duty plug-in electric vehicles for national energy and transportation planning," Energy Policy, Elsevier, vol. 63(C), pages 419-432.
    13. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
    14. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    15. Sioshansi, Ramteen & Miller, Jacob, 2011. "Plug-in hybrid electric vehicles can be clean and economical in dirty power systems," Energy Policy, Elsevier, vol. 39(10), pages 6151-6161, October.
    16. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    17. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    18. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power system impacts of electric vehicles in Germany: Charging with coal or renewables?," Applied Energy, Elsevier, vol. 156(C), pages 185-196.
    19. Katrašnik, Tomaž, 2013. "Impact of vehicle propulsion electrification on Well-to-Wheel CO2 emissions of a medium duty truck," Applied Energy, Elsevier, vol. 108(C), pages 236-247.
    20. Ramteen Sioshansi, 2012. "OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions," Operations Research, INFORMS, vol. 60(3), pages 506-516, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:395-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.