My bibliography
Save this item
Optimal forecasts in the presence of structural breaks
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Markiewicz, Agnieszka & Pick, Andreas, 2014.
"Adaptive learning and survey data,"
Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
- Agnieszka Markiewicz & Andreas Pick, 2013. "Adaptive Learning and Survey Data," CDMA Working Paper Series 201305, Centre for Dynamic Macroeconomic Analysis.
- Agnieszka Markiewicz & Andreas Pick, 2014. "Adaptive learning and survey data," DNB Working Papers 411, Netherlands Central Bank, Research Department.
- Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022.
"Forecasting Under Structural Breaks Using Improved Weighted Estimation,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
- Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting under Structural Breaks Using Improved Weighted Estimation," Working Papers 202210, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting under Structural Breaks Using Improved Weighted Estimation," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202212, University of Kansas, Department of Economics.
- Hashem Pesaran, M. & Smith, Ron P., 2016.
"Counterfactual analysis in macroeconometrics: An empirical investigation into the effects of quantitative easing,"
Research in Economics, Elsevier, vol. 70(2), pages 262-280.
- Pesaran, M. Hashem & Smith, Ron P., 2012. "Counterfactual Analysis in Macroeconometrics: An Empirical Investigation into the Effects of Quantitative Easing," IZA Discussion Papers 6618, Institute of Labor Economics (IZA).
- M. Hashem Pesaran & Ron P Smith, 2014. "Counterfactual Analysis in Macroeconometrics: An Empirical Investigation into the Effects of Quantitative Easing," Birkbeck Working Papers in Economics and Finance 1406, Birkbeck, Department of Economics, Mathematics & Statistics.
- M. Hashem Pesaran & Ron P. Smith, 2012. "Counterfactual Analysis in Macroeconometrics: An Empirical Investigation into the Effects of Quantitative Easing," CESifo Working Paper Series 3879, CESifo.
- M. Hashem Pesaran & Ron P. Smith, 2012. "Counterfactual Analysis in Macroeconometrics: An Empirical Investigation into the Effects of Quantitative Easing," Working Paper series 37_12, Rimini Centre for Economic Analysis.
- Luca Nocciola, 2022.
"Finite Sample Forecast Properties and Window Length Under Breaks in Cointegrated Systems,"
Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 167-196,
Emerald Group Publishing Limited.
- Luca Nocciola, "undated". "Finite sample forecast properties and window length under breaks in cointegrated systems," Discussion Papers 19/07, University of Nottingham, Granger Centre for Time Series Econometrics.
- Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
- Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
- Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Y. Dendramis & G. Kapetanios & M. Marcellino, 2020.
"A similarity‐based approach for macroeconomic forecasting,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 801-827, June.
- Marcellino, Massimiliano & Kapetanios, George & Dendramis, Yiannis, 2020. "A Similarity-based Approach for Macroeconomic Forecasting," CEPR Discussion Papers 14469, C.E.P.R. Discussion Papers.
- John G. Fernald, 2015.
"Productivity and Potential Output before, during, and after the Great Recession,"
NBER Macroeconomics Annual, University of Chicago Press, vol. 29(1), pages 1-51.
- John G. Fernald, 2014. "Productivity and Potential Output before, during, and after the Great Recession," NBER Chapters, in: NBER Macroeconomics Annual 2014, Volume 29, pages 1-51, National Bureau of Economic Research, Inc.
- John G. Fernald, 2012. "Productivity and potential output before, during, and after the Great Recession," Working Paper Series 2012-18, Federal Reserve Bank of San Francisco.
- John G. Fernald, 2014. "Productivity and Potential Output Before, During, and After the Great Recession," Working Paper Series 2014-15, Federal Reserve Bank of San Francisco.
- John Fernald, 2014. "Productivity and Potential Output Before, During, and After the Great Recession," NBER Working Papers 20248, National Bureau of Economic Research, Inc.
- John Fernald, 2014. "Productivity and Potential Output Before, During, and After the Great Recession," 2014 Meeting Papers 1369, Society for Economic Dynamics.
- Khowaja, Kainat & Saef, Danial & Sizov, Sergej & Härdle, Wolfgang Karl, 2020. "Data Analytics Driven Controlling: bridging statistical modeling and managerial intuition," IRTG 1792 Discussion Papers 2020-026, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
- Antoine Mandel & Amir Sani, 2017.
"A Machine Learning Approach to the Forecast Combination Puzzle,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01317974, HAL.
- Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
- Fernald, John G. & Hsu, Eric & Spiegel, Mark M., 2021.
"Is China fudging its GDP figures? Evidence from trading partner data,"
Journal of International Money and Finance, Elsevier, vol. 110(C).
- John G. Fernald & Eric Hsu & Mark M. Spiegel, 2019. "Is China Fudging Its GDP Figures? Evidence from Trading Partner Data," Working Paper Series 2019-19, Federal Reserve Bank of San Francisco.
- Vecchi, Edoardo & Berra, Gabriele & Albrecht, Steffen & Gagliardini, Patrick & Horenko, Illia, 2023. "Entropic approximate learning for financial decision-making in the small data regime," Research in International Business and Finance, Elsevier, vol. 65(C).
- Koo, Bonsoo & Seo, Myung Hwan, 2015.
"Structural-break models under mis-specification: Implications for forecasting,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
- Boonsoo Koo & Myung Hwan Seo, 2013. "Structural-break models under mis-specification: implications for forecasting," Monash Econometrics and Business Statistics Working Papers 8/13, Monash University, Department of Econometrics and Business Statistics.
- Boonsoo Koo & Myung Hwan Seo, 2013. "Structural-break models under mis-specification: implications for forecasting," Monash Econometrics and Business Statistics Working Papers 11/13, Monash University, Department of Econometrics and Business Statistics.
- Davide Delle Monache & Ivan Petrella, 2014.
"Adaptive Models and Heavy Tails,"
Birkbeck Working Papers in Economics and Finance
1409, Birkbeck, Department of Economics, Mathematics & Statistics.
- Petrella, Ivan & Delle Monache, Davide, 2016. "Adaptive models and heavy tails," Bank of England working papers 577, Bank of England.
- Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails," Temi di discussione (Economic working papers) 1052, Bank of Italy, Economic Research and International Relations Area.
- Hännikäinen Jari, 2017.
"Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks,"
Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
- Hännikäinen, Jari, 2015. "Selection of an estimation window in the presence of data revisions and recent structural breaks," MPRA Paper 66759, University Library of Munich, Germany.
- Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
- Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Mardi Dungey & Jan P.A.M. Jacobs & Jing Tian, 2017.
"Forecasting output gaps in the G-7 countries: the role of correlated innovations and structural breaks,"
Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4554-4566, September.
- Dungey, Mardi & Jacobs, Jan P.A.M. & Tian, Jing, 2016. "Forecasting output gaps in the G-7 countries: The role of correlated Innovations and structural breaks," Working Papers 2016-04, University of Tasmania, Tasmanian School of Business and Economics.
- Afees A. Salisu & Wasiu Adekunle & Zachariah Emmanuel & Wasiu A. Alimi, 2018. "Predicting exchange rate with commodity prices: The role of structural breaks and asymmetries," Working Papers 055, Centre for Econometric and Allied Research, University of Ibadan.
- Constantin ANGHELACHE & Alexandru MANOLE & Mădălina-Gabriela ANGHEL, 2017. "Using the input-output model in macroeconomic analysis and forecasting studies," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(611), S), pages 21-32, Summer.
- Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
- Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
- Yongchen Zhao, 2021.
"The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms,"
Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
- Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-04, Towson University, Department of Economics, revised Mar 2020.
- Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
- Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022.
"Optimal forecast under structural breaks,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 965-987, August.
- Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal Forecast under Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202207, University of Kansas, Department of Economics.
- Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal Forecast under Structural Breaks," Working Papers 202208, University of California at Riverside, Department of Economics.
- Mikihito Nishi, 2024. "Estimating Time-Varying Parameters of Various Smoothness in Linear Models via Kernel Regression," Papers 2406.14046, arXiv.org, revised Jan 2025.
- Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
- Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
- Renata Tavanielli & Márcio Laurini, 2023. "Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
- Crafts, Nicholas & Mills, Terence C., 2017.
"Trend TFP Growth in the United States: Forecasts versus Outcomes,"
CAGE Online Working Paper Series
329, Competitive Advantage in the Global Economy (CAGE).
- Crafts, Nicholas & Mills, Terence, 2017. "Trend TFP Growth in the United States: Forecasts versus Outcomes," CEPR Discussion Papers 12029, C.E.P.R. Discussion Papers.
- Andre Jungmittag, 2016.
"Combination of Forecasts across Estimation Windows: An Application to Air Travel Demand,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 373-380, July.
- Jungmittag, Andre, 2014. "Combination of forecasts across estimation windows: An application to air travel demand," Working Paper Series 05, Frankfurt University of Applied Sciences, Faculty of Business and Law.
- Davide Delle Monache & Ivan Petrella, 2014.
"Adaptive Models and Heavy Tails,"
Working Papers
720, Queen Mary University of London, School of Economics and Finance.
- Petrella, Ivan & Delle Monache, Davide, 2016. "Adaptive models and heavy tails," Bank of England working papers 577, Bank of England.
- Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails," Temi di discussione (Economic working papers) 1052, Bank of Italy, Economic Research and International Relations Area.
- Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
- Mwasi Paza Mboya & Philipp Sibbertsen, 2023.
"Optimal forecasts in the presence of discrete structural breaks under long memory,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
- Mboya, Mwasi & Sibbertsen, Philipp, 2022. "Optimal Forecasts in the Presence of Discrete Structural Breaks under Long Memory," Hannover Economic Papers (HEP) dp-705, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Sayar Karmakar & Marek Chudý & Wei Biao Wu, 2022. "Long‐term prediction intervals with many covariates," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 587-609, July.
- Tom Boot & Andreas Pick, 2014. "Optimal forecasts from Markov switching models," DNB Working Papers 452, Netherlands Central Bank, Research Department.
- Skrobotov, Anton, 2024. "Time series forecasting under structural breaks," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 76, pages 120-139.
- Salisu, Afees A. & Ndako, Umar B. & Oloko, Tirimisiyu F., 2019. "Assessing the inflation hedging of gold and palladium in OECD countries," Resources Policy, Elsevier, vol. 62(C), pages 357-377.
- Antoine Mandel & Amir Sani, 2016.
"Learning Time-Varying Forecast Combinations,"
Documents de travail du Centre d'Economie de la Sorbonne
16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022.
"Smooth Robust Multi-Horizon Forecasts,"
Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165,
Emerald Group Publishing Limited.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2020. "Smooth Robust Multi-Horizon Forecasts," Working Papers 2020-009, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
- Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
- Oh, Dong Hwan & Patton, Andrew J., 2024. "Better the devil you know: Improved forecasts from imperfect models," Journal of Econometrics, Elsevier, vol. 242(1).
- Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
- Karanasos, Menelaos & Paraskevopoulos,Alexandros & Canepa, Alessandra, 2020. "Unified Theory for the Large Family of Time Varying Models with Arma Representations: One Solution Fits All," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202008, University of Turin.
- Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
- Dong Hwan Oh & Andrew J. Patton, 2021. "Better the Devil You Know: Improved Forecasts from Imperfect Models," Finance and Economics Discussion Series 2021-071, Board of Governors of the Federal Reserve System (U.S.).
- repec:wrk:wrkemf:13 is not listed on IDEAS
- Pablo Guerróon‐Quintana & Molin Zhong, 2023.
"Macroeconomic forecasting in times of crises,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
- Pablo Guerrón-Quintana & Molin Zhong, 2017. "Macroeconomic Forecasting in Times of Crises," Finance and Economics Discussion Series 2017-018, Board of Governors of the Federal Reserve System (U.S.).
- John G. Fernald, 2016. "Reassessing Longer-Run U.S. Growth: How Low?," Working Paper Series 2016-18, Federal Reserve Bank of San Francisco.
- Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
- Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
- Zongwu Cai & Gunawan, 2023. "A Combination Forecast for Nonparametric Models with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202310, University of Kansas, Department of Economics, revised Sep 2023.
- Katlego Kola & Tumellano Sebehela, 2021. "Market The (De)merits of using Integral Transforms in Predicting Structural Break Points," International Real Estate Review, Global Social Science Institute, vol. 24(3), pages 405-467.
- Yin, Anwen, 2019. "Out-of-sample equity premium prediction in the presence of structural breaks," International Review of Financial Analysis, Elsevier, vol. 65(C).
- Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
- Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
- Davide De Gaetano, 2018. "Forecast Combinations for Structural Breaks in Volatility: Evidence from BRICS Countries," JRFM, MDPI, vol. 11(4), pages 1-13, October.
- Fernald, John G. & Hsu, Eric & Spiegel, Mark M., 2021. "Reprint: Is China fudging its GDP figures? Evidence from trading partner data," Journal of International Money and Finance, Elsevier, vol. 114(C).
- Jing Tian & Qing Zhou, 2018. "Improving equity premium forecasts by incorporating structural break uncertainty," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 619-656, November.
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
- Biolsi, Christopher, 2021. "Labor productivity forecasts based on a Beveridge–Nelson filter: Is there statistical evidence for a slowdown?," Journal of Macroeconomics, Elsevier, vol. 69(C).
- Zhang, Xingmin & Zhang, Shuai, 2021. "Optimal time-varying tail risk network with a rolling window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).