IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v242y2024i1s0304407624001131.html
   My bibliography  Save this article

Better the devil you know: Improved forecasts from imperfect models

Author

Listed:
  • Oh, Dong Hwan
  • Patton, Andrew J.

Abstract

Many important economic decisions are based on a parametric forecasting model that is known to be good but imperfect. We propose methods to improve out-of-sample forecasts from a misspecified model by estimating its parameters using a form of local M estimation (thereby nesting local OLS and local MLE), drawing on information from a state variable that is correlated with the misspecification of the model. We theoretically consider the forecast environments in which our approach is likely to offer improvements over standard methods, and we find significant forecast improvements from applying the proposed method across four distinct empirical analyses including volatility forecasting, risk management, and yield curve forecasting.

Suggested Citation

  • Oh, Dong Hwan & Patton, Andrew J., 2024. "Better the devil you know: Improved forecasts from imperfect models," Journal of Econometrics, Elsevier, vol. 242(1).
  • Handle: RePEc:eee:econom:v:242:y:2024:i:1:s0304407624001131
    DOI: 10.1016/j.jeconom.2024.105767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624001131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Model misspecification; Local maximum likelihood; Volatility forecasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:242:y:2024:i:1:s0304407624001131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.