My bibliography
Save this item
Optimal prediction pools
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hautsch, Nikolaus & Voigt, Stefan, 2019.
"Large-scale portfolio allocation under transaction costs and model uncertainty,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
- Nikolaus Hautsch & Stefan Voigt, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty," Papers 1709.06296, arXiv.org, revised Jun 2018.
- Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Hansen, Lars Peter & Sargent, Thomas J., 2022. "Structured ambiguity and model misspecification," Journal of Economic Theory, Elsevier, vol. 199(C).
- Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022.
"Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity,"
Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50,
Emerald Group Publishing Limited.
- Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2015. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 5468, CESifo.
- Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2020. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 8810, CESifo.
- Buncic, Daniel & Müller, Oliver, 2017. "Measuring the output gap in Switzerland with linear opinion pools," Economic Modelling, Elsevier, vol. 64(C), pages 153-171.
- Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023.
"Bayesian Artificial Neural Networks for frontier efficiency analysis,"
Journal of Econometrics, Elsevier, vol. 236(2).
- Valentin Zelenyuk & Valentyn Panchenko, 2023. "Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP022023, School of Economics, University of Queensland, Australia.
- Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2023. "Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP012023, School of Economics, University of Queensland, Australia.
- Tan, Fei, 2018. "A Frequency-Domain Approach to Dynamic Macroeconomic Models," MPRA Paper 90487, University Library of Munich, Germany.
- Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
- Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019.
"Higher Moment Constraints for Predictive Density Combinations,"
Working Papers
BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
- Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2020. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2020-01, University of Sydney Business School, Discipline of Business Analytics.
- Emilio Zanetti Chini, 2018.
"Forecaster’s utility and forecasts coherence,"
DEM Working Papers Series
145, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," CREATES Research Papers 2018-01, Department of Economics and Business Economics, Aarhus University.
- Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
- Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017.
"Forecasting GDP with global components: This time is different,"
International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
- Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Paper 2015/05, Norges Bank.
- Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Papers No 1/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hilde C. Bjornland & Francesco Ravazzolo & Leif Anders Thorsrud, 2016. "Forecasting GDP with global components. This time is different," CAMA Working Papers 2016-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Anders Warne & Günter Coenen & Kai Christoffel, 2017.
"Marginalized Predictive Likelihood Comparisons of Linear Gaussian State‐Space Models with Applications to DSGE, DSGE‐VAR, and VAR Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 103-119, January.
- Warne, Anders & Coenen, Günter & Christoffel, Kai, 2014. "Marginalized predictive likelihood comparisons of linear Gaussian state-space models with applications to DSGE, DSGEVAR, and VAR models," CFS Working Paper Series 478, Center for Financial Studies (CFS).
- Marek Jarociński & Bartosz Maćkowiak, 2017.
"Granger Causal Priority and Choice of Variables in Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 319-329, May.
- Jarociński, Marek & Maćkowiak, Bartosz, 2013. "Granger-causal-priority and choice of variables in vector autoregressions," Working Paper Series 1600, European Central Bank.
- Mackowiak, Bartosz & Jarocinski, Marek, 2013. "Granger-Causal-Priority and Choice of Variables in Vector Autoregressions," CEPR Discussion Papers 9686, C.E.P.R. Discussion Papers.
- Bartosz Mackowiak, 2015. "Granger-Causal-Priority and Choice of Variables in Vector Autoregressions," 2015 Meeting Papers 66, Society for Economic Dynamics.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2014.
"A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics,"
CEPR Discussion Papers
10160, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Business School.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Davide Pettenuzzo & Allan Timmermann, 2017.
"Forecasting Macroeconomic Variables Under Model Instability,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
- Timmermann, Allan & Pettenuzzo, Davide, 2016. "Forecasting Macroeconomic Variables under Model Instability," CEPR Discussion Papers 11355, C.E.P.R. Discussion Papers.
- Matteo Mogliani & Anna Simoni, 2024. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Papers 2404.02671, arXiv.org, revised Nov 2024.
- Szabolcs Deák & Paul Levine & Afrasiab Mirza & Joseph Pearlman, 2019.
"Designing Robust Monetary Policy Using Prediction Pools,"
School of Economics Discussion Papers
1219, School of Economics, University of Surrey.
- Deak, S. & Levine, P. & Mirza, A. & Pearlman, J., 2019. "Designing Robust Monetary Policy Using Prediction Pools," Working Papers 19/11, Department of Economics, City University London.
- Roberto Casarin & Fabrizio Leisen & German Molina & Enrique ter Horst, 2014.
"A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities,"
Papers
1409.1956, arXiv.org.
- Roberto Casarin & Fabrizio Leisen & German Molina & Enrique Ter Horst, 2014. "A Bayesian Beta Markov Random Field calibration of the term structure of implied risk neutral densities," Working Papers 2014:22, Department of Economics, University of Venice "Ca' Foscari".
- George Papadopoulos & Savas Papadopoulos & Thomas Sager, 2016. "Credit risk stress testing for EU15 banks: a model combination approach," Working Papers 203, Bank of Greece.
- Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
- James Morley, 2014. "Measuring economic slack in Asia and the Pacific," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation, inflation and monetary policy in Asia and the Pacific, volume 77, pages 35-50, Bank for International Settlements.
- Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
- Richard K. Crump & Domenico Giannone & Sean Hundtofte, 2018.
"Changing Risk-Return Profiles,"
Liberty Street Economics
20181004, Federal Reserve Bank of New York.
- Richard K. Crump & Miro Everaert & Domenico Giannone & Sean Hundtofte, 2018. "Changing Risk-Return Profiles," Staff Reports 850, Federal Reserve Bank of New York.
- Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
- Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023.
"Macroeconomic forecasting in the euro area using predictive combinations of DSGE models,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
- Capek, Jan & Crespo Cuaresma, Jesus & Hauzenberger, Niko & Reichel, Vlastimil, 2020. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," Department of Economics Working Paper Series 305, WU Vienna University of Economics and Business.
- Jan Capek & Jesus Crespo Cuaresma & Niko Hauzenberger & Vlastimil Reichel, 2020. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," Department of Economics Working Papers wuwp305, Vienna University of Economics and Business, Department of Economics.
- Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
- Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021.
"Focused Bayesian prediction,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2019. "Focused Bayesian Prediction," Papers 1912.12571, arXiv.org, revised Aug 2020.
- Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020. "Focused Bayesian Prediction," Monash Econometrics and Business Statistics Working Papers 1/20, Monash University, Department of Econometrics and Business Statistics.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019.
"Bond Return Predictability: Economic Value and Links to the Macroeconomy,"
Management Science, INFORMS, vol. 65(2), pages 508-540, February.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75, Brandeis University, Department of Economics and International Business School.
- Timmermann, Allan & Pettenuzzo, Davide & Gargano, Antonio, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," CEPR Discussion Papers 10104, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75R, Brandeis University, Department of Economics and International Business School, revised Jul 2016.
- Li, Bing & Pei, Pei & Tan, Fei, 2021. "Financial distress and fiscal inflation," Journal of Macroeconomics, Elsevier, vol. 70(C).
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020.
"Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Papers No 01/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Paper 2019/2, Norges Bank.
- Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015.
"Optimal combination of survey forecasts,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
- Giannone, Domenico & De Mol, Christine & Conflitti, Cristina, 2012. "Optimal Combination of Survey Forecasts," CEPR Discussion Papers 9096, C.E.P.R. Discussion Papers.
- Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
- Michael S. O’Doherty & N. E. Savin & Ashish Tiwari, 2016. "Evaluating Hedge Funds with Pooled Benchmarks," Management Science, INFORMS, vol. 62(1), pages 69-89, January.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
- Gianni Amisano & John Geweke, 2017.
"Prediction Using Several Macroeconomic Models,"
The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 912-925, December.
- Amisano, Gianni & Geweke, John, 2013. "Prediction using several macroeconomic models," Working Paper Series 1537, European Central Bank.
- Chen, Yi-Ting & Liu, Chu-An, 2023.
"Model averaging for asymptotically optimal combined forecasts,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
- Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-frequency monitoring of growth-at-risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- Carlos Carvalho & Jared D. Fisher & Davide Pettenuzzo, 2018. "Optimal Asset Allocation with Multivariate Bayesian Dynamic Linear Models," Working Papers 123, Brandeis University, Department of Economics and International Business School.
- Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016.
"Dynamic prediction pools: An investigation of financial frictions and forecasting performance,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," NBER Working Papers 20575, National Bureau of Economic Research, Inc.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic prediction pools: an investigation of financial frictions and forecasting performance," Staff Reports 695, Federal Reserve Bank of New York.
- Guérin, Pierre & Leiva-Leon, Danilo, 2017.
"Model averaging in Markov-switching models: Predicting national recessions with regional data,"
Economics Letters, Elsevier, vol. 157(C), pages 45-49.
- Guérin, Pierre & Leiva-Leon, Danilo, 2014. "Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data," MPRA Paper 59361, University Library of Munich, Germany.
- Pierre Guérin & Danilo Leiva-Leon, 2017. "Model averaging in markov-switching models: predicting national recessions with regional data," Working Papers 1727, Banco de España.
- Pierre Guérin & Danilo Leiva-Leon, 2015. "Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data," Staff Working Papers 15-24, Bank of Canada.
- repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Knüppel, Malte & Krüger, Fabian, 2017.
"Forecast Uncertainty, Disagreement, and Linear Pools of Density Forecasts,"
VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking
168294, Verein für Socialpolitik / German Economic Association.
- Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
- Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017.
"Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
- Fabian Kr ger & Todd E. Clark & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers No 8/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Krüger, Fabian & Clark, Todd E. & Ravazzolo, Francesco, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113077, Verein für Socialpolitik / German Economic Association.
- Todd E. Clark & Fabian Krueger & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers (Old Series) 1439, Federal Reserve Bank of Cleveland.
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- Chin, Kuo-Hsuan & Li, Xue, 2019. "Bayesian forecast combination in VAR-DSGE models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 278-298.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Fernández-Villaverde, J. & Rubio-RamÃrez, J.F. & Schorfheide, F., 2016.
"Solution and Estimation Methods for DSGE Models,"
Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724,
Elsevier.
- Jesus Fernandez-Villaverde & Juan Rubio-RamÃrez & Frank Schorfheide, 2015. "Solution and Estimation Methods for DSGE Models," PIER Working Paper Archive 15-042, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2015.
- Jesús Fernández-Villaverde & Juan F. Rubio Ramírez & Frank Schorfheide, 2016. "Solution and Estimation Methods for DSGE Models," NBER Working Papers 21862, National Bureau of Economic Research, Inc.
- Rubio-RamÃrez, Juan Francisco & Schorfheide, Frank & Fernández-Villaverde, Jesús, 2015. "Solution and Estimation Methods for DSGE Models," CEPR Discussion Papers 11032, C.E.P.R. Discussion Papers.
- Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012.
"Reconstructing high dimensional dynamic distributions from distributions of lower dimension,"
Working Papers
12003, Concordia University, Department of Economics.
- Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2013. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers w0167, New Economic School (NES).
- Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2013. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers w0167, Center for Economic and Financial Research (CEFIR).
- Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
- Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023.
"Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
- Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Paper 2021/3, Norges Bank.
- Knut Are Aastveit & Jamie Cross & Herman K. van Dijk, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Tinbergen Institute Discussion Papers 21-053/III, Tinbergen Institute.
- Knut Are Aastveit & Jamie Cross & Herman K. Djik, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Papers No 03/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015.
"CES technology and business cycle fluctuations,"
Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
- Cristiano Cantore & Paul Levine & Joseph Pearlman & Bo Yang, 2014. "CES Technology and Business Cycle Fluctuations," School of Economics Discussion Papers 0414, School of Economics, University of Surrey.
- Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020.
"Composite likelihood methods for large Bayesian VARs with stochastic volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
- Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility," Working Paper Series 44, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
- Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2018-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Roberto Gómez‐Cram, 2022. "Late to Recessions: Stocks and the Business Cycle," Journal of Finance, American Finance Association, vol. 77(2), pages 923-966, April.
- Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022.
"Optimal probabilistic forecasts: When do they work?,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & Rub'en Loaiza-Maya & David T. Frazier & Worapree Maneesoonthorn & Andr'es Ram'irez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Papers 2009.09592, arXiv.org.
- Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017.
"Forecasting with VAR models: Fat tails and stochastic volatility,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
- Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pinter, Gabor, 2015. "Forecasting with VAR models: fat tails and stochastic volatility," Bank of England working papers 528, Bank of England.
- Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2015. "Forecasting with VAR Models: Fat Tails and Stochastic Volatility," CReMFi Discussion Papers 2, CReMFi, School of Economics and Finance, QMUL.
- Emilio Zanetti Chini, 2013.
"Generalizing smooth transition autoregressions,"
CREATES Research Papers
2013-32, Department of Economics and Business Economics, Aarhus University.
- Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CEIS Research Paper 294, Tor Vergata University, CEIS, revised 25 Sep 2014.
- Emilio Zanetti Chini, 2017. "Generalizing Smooth Transition Autoregressions," DEM Working Papers Series 138, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2016. "Generalizing smooth transition autoregressions," DEM Working Papers Series 114, University of Pavia, Department of Economics and Management.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Laurent L. Pauwels & Andrey L. Vasnev, 2017.
"Forecast combination for discrete choice models: predicting FOMC monetary policy decisions,"
Empirical Economics, Springer, vol. 52(1), pages 229-254, February.
- Pauwels, Laurent & Vasnev, Andrey, 2011. "Forecast combination for discrete choice models: predicting FOMC monetary policy decisions," Working Papers 11/2011, University of Sydney Business School, Discipline of Business Analytics.
- Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
- Zanetti Chini, Emilio, 2018.
"Forecasting dynamically asymmetric fluctuations of the U.S. business cycle,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
- Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," DEM Working Papers Series 156, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," CREATES Research Papers 2018-13, Department of Economics and Business Economics, Aarhus University.
- Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023.
"Empirically-transformed linear opinion pools,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
- Anthony Garratt & Timo Henckel & Shaun P. Vahey, 2019. "Empirically-transformed linear opinion pools," CAMA Working Papers 2019-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018.
"Bayesian Nonparametric Calibration and Combination of Predictive Distributions,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
- Roberto Casarin & Federico Bassetti & Francesco Ravazzolo, 2015. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Working Papers 2015:04, Department of Economics, University of Venice "Ca' Foscari".
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
- Kolasa, Marcin & Rubaszek, Michał, 2015.
"Forecasting using DSGE models with financial frictions,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.
- Michał Rubaszek & Marcin Kolasa, 2013. "Forecasting with DSGE models with financial frictions," EcoMod2013 5100, EcoMod.
- Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
- Mansoor Maitah & Daniel Toth & Elena Kuzmenko & Karel r dl & Helena Rezbov & Petra nov, 2016. "Forecast of Employment in Switzerland: The Macroeconomic View," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 132-138.
- Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023.
"On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2022. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," NBER Working Papers 29635, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone In?ation and Real Interest Rates," PIER Working Paper Archive 21-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
- Eo, Yunjong & Kang, Kyu Ho, 2020.
"The effects of conventional and unconventional monetary policy on forecasting the yield curve,"
Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
- Eo, Yunjong & Kang, Kyu Ho, 2019. "The Effects of Conventional and Unconventional Monetary Policy on Forecasting the Yield Curve," Working Papers 2019-08, University of Sydney, School of Economics, revised Nov 2019.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010.
"Combining forecast densities from VARs with uncertain instabilities,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
- Anne-Sofie Jore & James Mitchell & Shaun P. Vahey, 2008. "Combining forecast densities from VARs with uncertain instabilities," Working Paper 2008/01, Norges Bank.
- Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
- Knotek, Edward S. & Zaman, Saeed, 2023.
"Real-time density nowcasts of US inflation: A model combination approach,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
- Edward Knotek & Saeed Zaman, 2020. "Real-time density nowcasts of US inflation: a model-combination approach," Working Papers 2015, University of Strathclyde Business School, Department of Economics.
- Edward S. Knotek & Saeed Zaman, 2020. "Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach," Working Papers 20-31, Federal Reserve Bank of Cleveland.
- Onorante, Luca & Raftery, Adrian E., 2016.
"Dynamic model averaging in large model spaces using dynamic Occam׳s window,"
European Economic Review, Elsevier, vol. 81(C), pages 2-14.
- Luca Onorante & Adrian E. Raftery, 2014. "Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window," Papers 1410.7799, arXiv.org.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Tsionas, Mike G., 2021. "Optimal combinations of stochastic frontier and data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 294(2), pages 790-800.
- Tony Chernis & Gary Koop & Emily Tallman & Mike West, 2024.
"Decision Synthesis in Monetary Policy,"
Staff Working Papers
24-30, Bank of Canada.
- Tony Chernis & Gary Koop & Emily Tallman & Mike West, 2024. "Decision synthesis in monetary policy," Papers 2406.03321, arXiv.org.
- Aleksandra Nocoń, 2020. "Sustainable Approach to the Normalization Process of the UK’s Monetary Policy," Sustainability, MDPI, vol. 12(21), pages 1-14, November.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- Geweke, John & Amisano, Gianni, 2010.
"Comparing and evaluating Bayesian predictive distributions of asset returns,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
- Amisano, Gianni & Geweke, John, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 969, European Central Bank.
- Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014.
"Measuring output gap nowcast uncertainty,"
International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
- Anthony Garratt & James Mitchell & Shaun P. Vahey, 2011. "Measuring Output Gap Nowcast Uncertainty," CAMA Working Papers 2011-16, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Paolo Vidoni, 2021. "Boosting multiplicative model combination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 761-789, September.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
- Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
- Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
- Fabio Canova & Christian Matthes, 2021.
"Dealing with misspecification in structural macroeconometric models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
- Canova, Fabio & Matthes, Christian, 2019. "Dealing with misspecification in structural macroeconometric models," CEPR Discussion Papers 13511, C.E.P.R. Discussion Papers.
- P. Gorgi & Siem Jan (S.J.) Koopman & R. Lit, 2018. "The analysis and forecasting of ATP tennis matches using a high-dimensional dynamic model," Tinbergen Institute Discussion Papers 18-009/III, Tinbergen Institute.
- Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Quantile forecast optimal combination to enhance safety stock estimation," International Journal of Forecasting, Elsevier, vol. 35(1), pages 239-250.
- Piergiorgio Alessandri & Haroon Mumtaz, 2017.
"Financial conditions and density forecasts for US output and inflation,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
- Piergiorgio Alessandri & Haroon Mumtaz, 2013. "Financial conditions and density forecasts for US Output and inflation," Joint Research Papers 4, Centre for Central Banking Studies, Bank of England.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial conditions and density forecasts for US output and inflation," CReMFi Discussion Papers 1, CReMFi, School of Economics and Finance, QMUL.
- Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Online Appendix to "Financial conditions and density forecasts for US output and inflation"," Online Appendices 14-103, Review of Economic Dynamics.
- Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Code and data files for "Financial conditions and density forecasts for US output and inflation"," Computer Codes 14-103, Review of Economic Dynamics.
- Perricone, Chiara, 2018.
"Clustering macroeconomic variables,"
Structural Change and Economic Dynamics, Elsevier, vol. 44(C), pages 23-33.
- Chiara Perricone, 2013. "Clustering Macroeconomic Variables," CEIS Research Paper 283, Tor Vergata University, CEIS, revised 11 Jun 2013.
- Alessandra Canepa, & Karanasos, Menelaos & Paraskevopoulos, Athanasios & Chini, Emilio Zanetti, 2022. "Forecasting Ination: A GARCH-in-Mean-Level Model with Time Varying Predictability," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202212, University of Turin.
- Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
- Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
- Waggoner, Daniel F. & Zha, Tao, 2012.
"Confronting model misspecification in macroeconomics,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 167-184.
- Daniel F. Waggoner & Tao Zha, 2010. "Confronting model misspecification in macroeconomics," FRB Atlanta Working Paper 2010-18, Federal Reserve Bank of Atlanta.
- Daniel F. Waggoner & Tao Zha, 2012. "Confronting Model Misspecification in Macroeconomics," NBER Working Papers 17791, National Bureau of Economic Research, Inc.
- Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
- McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
- Markku Lanne & Jani Luoto, 2018. "Data†Driven Identification Constraints for DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 236-258, April.
- Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2017. "Accelerating GARCH and Score-Driven Models: Optimality, Estimation and Forecasting," Tinbergen Institute Discussion Papers 17-059/III, Tinbergen Institute.
- repec:ags:aaea22:335759 is not listed on IDEAS
- Geoff Kenny & Thomas Kostka & Federico Masera, 2015.
"Can Macroeconomists Forecast Risk? Event-Based Evidence from the Euro-Area SPF,"
International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 1-46, December.
- Kenny, Geoff & Kostka, Thomas & Masera, Federico, 2013. "Can macroeconomists forecast risk? Event-based evidence from the euro area SPF," Working Paper Series 1540, European Central Bank.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015.
"Generalised density forecast combinations,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
- N. Fawcett & G. Kapetanios & J. Mitchell & S. Price, 2014. "Generalised Density Forecast Combinations," CAMA Working Papers 2014-24, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Fawcett, Nicholas & Kapetanios, George & Mitchell, James & Price, Simon, 2014. "Generalised density forecast combinations," Bank of England working papers 492, Bank of England.
- Loria, Francesca & Matthes, Christian & Wang, Mu-Chun, 2022.
"Economic theories and macroeconomic reality,"
Journal of Monetary Economics, Elsevier, vol. 126(C), pages 105-117.
- Loria, Francesca & Matthes, Christian & Wang, Mu-Chun, 2021. "Economic theories and macroeconomic reality," Discussion Papers 56/2021, Deutsche Bundesbank.
- Blasques, F. & Gorgi, P. & Koopman, S.J., 2019. "Accelerating score-driven time series models," Journal of Econometrics, Elsevier, vol. 212(2), pages 359-376.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
- Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
- Filippo di Mauro & Filippo di Mauro, Fabio Fornari, 2014. "Going granular: The importance of firm-level equity information in anticipating economic activity," EcoMod2014 6809, EcoMod.
- Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
- Gorgi, P. & Koopman, S.J., 2023.
"Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Paolo Gorgi & Siem Jan Koopman, 2020. "Beta observation-driven models with exogenous regressors: a joint analysis of realized correlation and leverage effects," Tinbergen Institute Discussion Papers 20-004/III, Tinbergen Institute.
- Thorey, J. & Chaussin, C. & Mallet, V., 2018. "Ensemble forecast of photovoltaic power with online CRPS learning," International Journal of Forecasting, Elsevier, vol. 34(4), pages 762-773.
- Giovanni Angelini & Paolo Gorgi, 2018. "DSGE Models with Observation-Driven Time-Varying parameters," Tinbergen Institute Discussion Papers 18-030/III, Tinbergen Institute.
- Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
- Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
- Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
- Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
- Yusupova, Alisa & Pavlidis, Nicos G. & Pavlidis, Efthymios G., 2023. "Dynamic linear models with adaptive discounting," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1925-1944.
- Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
- Geoff Kenny & Thomas Kostka & Federico Masera, 2014.
"How Informative are the Subjective Density Forecasts of Macroeconomists?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 163-185, April.
- Geoff Kenny & Thomas Kostka & Federico Masera, 2011. "How Informative are the Subjective Density Forecasts of Macroeconomists?," CESifo Working Paper Series 3671, CESifo.
- Kenny, Geoff & Kostka, Thomas & Masera, Federico, 2012. "How informative are the subjective density forecasts of macroeconomists?," Working Paper Series 1446, European Central Bank.
- Angelini, Giovanni & Gorgi, Paolo, 2018. "DSGE Models with observation-driven time-varying volatility," Economics Letters, Elsevier, vol. 171(C), pages 169-171.
- Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019.
"Forecasting economic time series using score-driven dynamic models with mixed-data sampling,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
- Paolo Gorgi & Siem Jan (S.J.) Koopman & Mengheng Li, 2018. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," Tinbergen Institute Discussion Papers 18-026/III, Tinbergen Institute.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
- di Mauro, Filippo & Fornari, Fabio & Mannucci, Dario, 2011. "Stock market firm-level information and real economic activity," Working Paper Series 1366, European Central Bank.
- Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
- G. Kenny, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 500-504, October.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023.
"Exact Likelihood for Inverse Gamma Stochastic Volatility Models,"
GRIPS Discussion Papers
23-07, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majon, 2024. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 24-03, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," Working Paper series 23-11, Rimini Centre for Economic Analysis.
- Ryan Cumings-Menon & Minchul Shin, 2020. "Probability Forecast Combination via Entropy Regularized Wasserstein Distance," Working Papers 20-31/R, Federal Reserve Bank of Philadelphia.
- Wada, Tatsuma, 2022. "Out-of-sample forecasting of foreign exchange rates: The band spectral regression and LASSO," Journal of International Money and Finance, Elsevier, vol. 128(C).
- Gelain, Paolo & Iskrev, Nikolay & J. Lansing, Kevin & Mendicino, Caterina, 2019. "Inflation dynamics and adaptive expectations in an estimated DSGE model," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 258-277.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2018. "Does a financial accelerator improve forecasts during financial crises?: Evidence from Japan with Prediction Pool Methods," MPRA Paper 85523, University Library of Munich, Germany.
- Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2019. "Non-Gaussian VARMA model with stochastic volatility and applications in stock market bubbles," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 129-136.
- Graziano Moramarco, 2021. "Regime-Switching Density Forecasts Using Economists' Scenarios," Papers 2110.13761, arXiv.org, revised Feb 2024.
- Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
- Alessandra Canepa & Emilio Zanetti Chini & Huthaifa Alqaralleh, 2022.
"Global Cities and Local Challenges: Booms and Busts in the London Real Estate Market,"
The Journal of Real Estate Finance and Economics, Springer, vol. 64(1), pages 1-29, January.
- Canepa, Alessandra & Zanetti Chini, Emilio & Alqaralleh, Huthaifa, 2020. "Global Cities and Local Challenges: Booms and Busts in the London Real Estate Market," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202011, University of Turin.
- Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
- Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
- repec:syb:wpbsba:01/2013 is not listed on IDEAS
- Peter McAdam & Anders Warne, 2024.
"Density forecast combinations: The real‐time dimension,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
- McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
- Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
- McAdam, Peter & Warne, Anders, 2019.
"Euro area real-time density forecasting with financial or labor market frictions,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.
- McAdam, Peter & Warne, Anders, 2018. "Euro area real-time density forecasting with financial or labor market frictions," Working Paper Series 2140, European Central Bank.
- Feng Li & Mattias Villani, 2013. "Efficient Bayesian Multivariate Surface Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 706-723, December.
- Pauwels, Laurent, 2019. "Predicting China’s Monetary Policy with Forecast Combinations," Working Papers BAWP-2019-07, University of Sydney Business School, Discipline of Business Analytics.
- Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
- Chen, Yizhong & He, Li & Li, Jing & Cheng, Xi & Lu, Hongwei, 2016. "An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, Elsevier, vol. 183(C), pages 969-983.
- Anatolyev, Stanislav & Khabibullin, Renat & Prokhorov, Artem, 2014. "An algorithm for constructing high dimensional distributions from distributions of lower dimension," Economics Letters, Elsevier, vol. 123(3), pages 257-261.
- Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
- Martina Hengge, 2019. "Uncertainty as a Predictor of Economic Activity," IHEID Working Papers 19-2019, Economics Section, The Graduate Institute of International Studies.
- Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
- Joffre Swait & Fred Feinberg, 2014. "Deciding how to decide: an agenda for multi-stage choice modelling research in marketing," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 26, pages 649-660, Edward Elgar Publishing.
- Sean Langcake & Tim Robinson, 2013. "An Empirical BVAR-DSGE Model of the Australian Economy," RBA Research Discussion Papers rdp2013-07, Reserve Bank of Australia.
- Silvia Figini & Roberto Savona & Marika Vezzoli, 2016. "Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 6-20, January.
- Chung, Tsz-Kin & Iiboshi, Hirokuni, 2015. "Prediction of Term Structure with Potentially Misspecified Macro-Finance Models near the Zero Lower Bound," MPRA Paper 85709, University Library of Munich, Germany.
- Fabio Busetti, 2017.
"Quantile Aggregation of Density Forecasts,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
- Fabio Busetti, 2014. "Quantile aggregation of density forecasts," Temi di discussione (Economic working papers) 979, Bank of Italy, Economic Research and International Relations Area.
- Christian Kascha & Francesco Ravazzolo, 2010.
"Combining inflation density forecasts,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
- Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
- Adam Check & Jeremy Piger, 2021. "Structural Breaks in U.S. Macroeconomic Time Series: A Bayesian Model Averaging Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(8), pages 1999-2036, December.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
- Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
- Graham Elliott & Allan Timmermann, 2016.
"Forecasting in Economics and Finance,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
- Timmermann, Allan & Elliott, Graham, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
- Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
- Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
- Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
- Panayotis Michaelides & Mike Tsionas & Panos Xidonas, 2020. "A Bayesian Signals Approach for the Detection of Crises," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 551-585, September.
- Danilo Leiva‐León & Gabriel Perez Quiros & Eyno Rots, 2024. "Real‐time weakness of the global economy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 813-832, August.
- Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
- Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
- Saurabh Bansal & Genaro J. Gutierrez, 2020. "Estimating Uncertainties Using Judgmental Forecasts with Expert Heterogeneity," Operations Research, INFORMS, vol. 68(2), pages 363-380, March.
- Nikolay Gospodinov & Esfandiar Maasoumi, 2017. "General Aggregation of Misspecified Asset Pricing Models," FRB Atlanta Working Paper 2017-10, Federal Reserve Bank of Atlanta.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Ciccarelli, Matteo & Darracq Pariès, Matthieu & Priftis, Romanos & Angelini, Elena & Bańbura, Marta & Bokan, Nikola & Fagan, Gabriel & Gumiel, José Emilio & Kornprobst, Antoine & Lalik, Magdalena & Mo, 2024. "ECB macroeconometric models for forecasting and policy analysis," Occasional Paper Series 344, European Central Bank.
- Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
- Warne, Anders & Coenen, Günter & Christoffel, Kai, 2013. "Predictive likelihood comparisons with DSGE and DSGE-VAR models," Working Paper Series 1536, European Central Bank.
- Dr. James Mitchell, 2008. "Evaluating Density Forecasts: Forecast Combinations, Model Mixtures, Calibration and Sharpness," National Institute of Economic and Social Research (NIESR) Discussion Papers 320, National Institute of Economic and Social Research.
- Andrés Ramírez-Hassan, 2020. "Dynamic variable selection in dynamic logistic regression: an application to Internet subscription," Empirical Economics, Springer, vol. 59(2), pages 909-932, August.
- Iiboshi, Hirokuni, 2016. "A multiple DSGE-VAR approach: Priors from a combination of DSGE models and evidence from Japan," Japan and the World Economy, Elsevier, vol. 40(C), pages 1-8.
- repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.
- Gospodinov, Nikolay & Maasoumi, Esfandiar, 2021. "Generalized aggregation of misspecified models: With an application to asset pricing," Journal of Econometrics, Elsevier, vol. 222(1), pages 451-467.
- Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2021. "Bridging the Divide? Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP082021, School of Economics, University of Queensland, Australia.
- K=osaku Takanashi & Kenichiro McAlinn, 2019. "Equivariant online predictions of non-stationary time series," Papers 1911.08662, arXiv.org, revised Jun 2023.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
- Paolo Vidoni, 2018. "A note on predictive densities based on composite likelihood methods," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 31-48, April.
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.
- Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.