IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/478.html
   My bibliography  Save this paper

Marginalized predictive likelihood comparisons of linear Gaussian state-space models with applications to DSGE, DSGEVAR, and VAR models

Author

Listed:
  • Warne, Anders
  • Coenen, Günter
  • Christoffel, Kai

Abstract

The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models with Bayesian methods, and proposes to utilize a missing observations consistent Kalman filter in the process of achieving this objective. As an empirical application, we analyze euro area data and compare the density forecast performance of a DSGE model to DSGE-VARs and reduced-form linear Gaussian models.

Suggested Citation

  • Warne, Anders & Coenen, Günter & Christoffel, Kai, 2014. "Marginalized predictive likelihood comparisons of linear Gaussian state-space models with applications to DSGE, DSGEVAR, and VAR models," CFS Working Paper Series 478, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:478
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/102702/1/798286458.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael K. Andersson & Sune Karlsson, 2008. "Bayesian forecast combination for VAR models," Advances in Econometrics, in: Bayesian Econometrics, pages 501-524, Emerald Group Publishing Limited.
    2. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    3. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
    4. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    5. Canova, Fabio, 2014. "Bridging DSGE models and the raw data," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 1-15.
    6. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    7. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
    8. John F. Henry & L. Randall Wray, 1998. "Economic Time," Macroeconomics 9811004, University Library of Munich, Germany.
    9. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    10. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
    11. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    12. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    13. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    14. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Villani, Mattias, 2008. "Evaluating an estimated new Keynesian small open economy model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2690-2721, August.
    15. John Geweke & Gianni Amisano, 2014. "Analysis of Variance for Bayesian Inference," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 270-288, June.
    16. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    17. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    18. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    19. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    20. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
    21. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    22. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    23. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    24. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    25. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    26. Litterman, Robert, 1986. "A statistical approach to economic forecasting : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 1-4," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    27. Schmitt-Grohé, Stephanie & Uribe, Martín, 2010. "Evaluating the sample likelihood of linearized DSGE models without the use of the Kalman filter," Economics Letters, Elsevier, vol. 109(3), pages 142-143, December.
    28. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    29. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    30. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    31. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    32. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    33. Anderson, Gary S., 2010. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 472-489, March.
    34. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    35. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    36. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2013. "Predictive likelihood comparisons with DSGE and DSGE-VAR models," Working Paper Series 1536, European Central Bank.
    37. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    38. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    39. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    40. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    41. Fagan, Gabriel & Henry, Jerome & Mestre, Ricardo, 2005. "An area-wide model for the euro area," Economic Modelling, Elsevier, vol. 22(1), pages 39-59, January.
    42. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    43. Dieppe, Alistair & Warmedinger, Thomas, 2007. "Modelling intra- and extra-area trade substitution and exchange rate pass-through in the euro area," Working Paper Series 760, European Central Bank.
    44. Smets, Frank & Warne, Anders & Wouters, Rafael, 2014. "Professional forecasters and real-time forecasting with a DSGE model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 981-995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    2. Linde, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks' Macro Models," CEPR Discussion Papers 11405, C.E.P.R. Discussion Papers.
    3. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    4. Francesco Simone Lucidi, 2023. "The misalignment of fiscal multipliers in Italian regions," Regional Studies, Taylor & Francis Journals, vol. 57(10), pages 2073-2086, October.
    5. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    6. Tim Oliver Berg, 2016. "Multivariate Forecasting with BVARs and DSGE Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 718-740, December.
    7. Lindé, J. & Smets, F. & Wouters, R., 2016. "Challenges for Central Banks’ Macro Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2185-2262, Elsevier.
    8. Markku Lanne & Jani Luoto, 2018. "Data†Driven Identification Constraints for DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 236-258, April.
    9. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    10. Yuliya Rychalovska & Sergey Slobodyan & Raf Wouters, 2024. "Survey Expectations, Adaptive Learning and Inflation Dynamics," CERGE-EI Working Papers wp781, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    11. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    12. McAdam, Peter & Warne, Anders, 2019. "Euro area real-time density forecasting with financial or labor market frictions," International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.
    13. Mokinski, Frieder, 2017. "A severity function approach to scenario selection," Discussion Papers 34/2017, Deutsche Bundesbank.
    14. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    15. Ciccarelli, Matteo & Darracq Pariès, Matthieu & Priftis, Romanos & Angelini, Elena & Bańbura, Marta & Bokan, Nikola & Fagan, Gabriel & Gumiel, José Emilio & Kornprobst, Antoine & Lalik, Magdalena & Mo, 2024. "ECB macroeconometric models for forecasting and policy analysis," Occasional Paper Series 344, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2013. "Predictive likelihood comparisons with DSGE and DSGE-VAR models," Working Paper Series 1536, European Central Bank.
    2. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    3. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    4. Tim Oliver Berg, 2016. "Multivariate Forecasting with BVARs and DSGE Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 718-740, December.
    5. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    8. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    9. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    10. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    11. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    12. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    13. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    14. McAdam, Peter & Warne, Anders, 2019. "Euro area real-time density forecasting with financial or labor market frictions," International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.
    15. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    16. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    17. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    18. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.
    19. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    20. Gianni Amisano & John Geweke, 2017. "Prediction Using Several Macroeconomic Models," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 912-925, December.

    More about this item

    Keywords

    Bayesian inference; density forecasting; Kalman filter; missing data; Monte Carlo integration; predictive likelihood;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ifkcfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.