IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v76y2018i1d10.1007_s40300-017-0118-y.html
   My bibliography  Save this article

A note on predictive densities based on composite likelihood methods

Author

Listed:
  • Paolo Vidoni

    (University of Udine)

Abstract

Whenever the computation of data distribution is unfeasible or inconvenient, the classical predictive procedures prove not to be useful. These rely, after all, on the conditional distribution of the future random variable, which is also unavailable. This paper considers a notion of composite likelihood for specifying composite predictive distributions, viewed as surrogates for true unknown predictive distribution. In particular, the focus is on the pairwise likelihood obtained as a weighted product of likelihood factors related to bivariate events associated with both the sample data and future observation. The specification of the weights, and more generally the evaluation of the frequentist properties of alternative pairwise predictive distributions, is performed by considering the mean square prediction error of the associated predictors and the expected Kullback–Liebler loss of the related predictive densities. Finally, simple examples concerning autoregressive models are presented.

Suggested Citation

  • Paolo Vidoni, 2018. "A note on predictive densities based on composite likelihood methods," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 31-48, April.
  • Handle: RePEc:spr:metron:v:76:y:2018:i:1:d:10.1007_s40300-017-0118-y
    DOI: 10.1007/s40300-017-0118-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-017-0118-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-017-0118-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    2. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    3. Masao Ueki & Kaoru Fueda, 2007. "Adjusting estimative prediction limits," Biometrika, Biometrika Trust, vol. 94(2), pages 509-511.
    4. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    5. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    6. Cristiano Varin & Paolo Vidoni, 2009. "Pairwise Likelihood Inference for General State Space Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 170-185.
    7. Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    2. Paolo Vidoni, 2021. "Boosting multiplicative model combination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 761-789, September.
    3. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    4. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    5. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
    6. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    7. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
    8. repec:bny:wpaper:0029 is not listed on IDEAS
    9. Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
    10. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    11. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    12. repec:bny:wpaper:0099 is not listed on IDEAS
    13. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    14. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
    15. Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
    16. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    17. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
    18. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    19. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
    20. repec:syb:wpbsba:01/2013 is not listed on IDEAS
    21. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    22. Büscher, Sebastian & Bauer, Dietmar, 2024. "Weighting strategies for pairwise composite marginal likelihood estimation in case of unbalanced panels and unaccounted autoregressive structure of the errors," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    23. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:76:y:2018:i:1:d:10.1007_s40300-017-0118-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.