IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v162y2016icp1505-1514.html
   My bibliography  Save this item

TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
  2. Ramachandran Kannan & Evangelos Panos & Stefan Hirschberg & Tom Kober, 2022. "A net‐zero Swiss energy system by 2050: Technological and policy options for the transition of the transportation sector," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
  3. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
  4. Zhu, Qianru & Leibowicz, Benjamin D. & Busby, Joshua W. & Shidore, Sarang & Adelman, David E. & Olmstead, Sheila M., 2022. "Enhancing policy realism in energy system optimization models: Politically feasible decarbonization pathways for the United States," Energy Policy, Elsevier, vol. 161(C).
  5. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
  6. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
  7. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
  8. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  9. Hagos, Dejene Assefa & Ahlgren, Erik O., 2020. "Exploring cost-effective transitions to fossil independent transportation in the future energy system of Denmark," Applied Energy, Elsevier, vol. 261(C).
  10. Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
  11. Neves, Sónia Almeida & Marques, António Cardoso, 2021. "The substitution of fossil fuels in the US transportation energy mix: Are emissions decoupling from economic growth?," Research in Transportation Economics, Elsevier, vol. 90(C).
  12. R. Schaeffer & A. Köberle & H. L. Soest & C. Bertram & G. Luderer & K. Riahi & V. Krey & D. P. Vuuren & E. Kriegler & S. Fujimori & W. Chen & C. He & Z. Vrontisi & S. Vishwanathan & A. Garg & R. Mathu, 2020. "Comparing transformation pathways across major economies," Climatic Change, Springer, vol. 162(4), pages 1787-1803, October.
  13. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
  14. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
  15. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
  16. Salvucci, Raffaele & Tattini, Jacopo & Gargiulo, Maurizio & Lehtilä, Antti & Karlsson, Kenneth, 2018. "Modelling transport modal shift in TIMES models through elasticities of substitution," Applied Energy, Elsevier, vol. 232(C), pages 740-751.
  17. Delfina Rogowska & Artur Wyrwa, 2021. "Analysis of the Potential for Reducing Life Cycle Greenhouse Gas Emissions from Motor Fuels," Energies, MDPI, vol. 14(13), pages 1-19, June.
  18. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  19. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
  20. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
  21. Zhou, Wenji & Hagos, Dejene Assefa & Stikbakke, Sverre & Huang, Lizhen & Cheng, Xu & Onstein, Erling, 2022. "Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway – The case of Hinnøya," Energy, Elsevier, vol. 246(C).
  22. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
  23. Theis Madsen & Yiannis Kountouris & Rasmus Bramstoft & Phoebe Koundouri & Dogan Keles, 2024. "Pathways for Pan-European Energy System Decarbonization: The Effect of Emission Policies on Target Alignment," DEOS Working Papers 2404, Athens University of Economics and Business.
  24. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
  25. Wang, Huan & Chen, Wenying, 2019. "Modeling of energy transformation pathways under current policies, NDCs and enhanced NDCs to achieve 2-degree target," Applied Energy, Elsevier, vol. 250(C), pages 549-557.
  26. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
  27. Li, Tianxiao & Liu, Pei & Li, Zheng, 2020. "Quantitative relationship between low-carbon pathways and system transition costs based on a multi-period and multi-regional energy infrastructure planning approach: A case study of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  28. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  29. Lukáš Rečka & Milan Ščasný, 2017. "Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic," Energies, MDPI, vol. 10(12), pages 1-27, November.
  30. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
  31. Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
  32. Li, Nan & Chen, Wenying & Zhang, Qiang, 2020. "Development of China TIMES-30P model and its application to model China's provincial low carbon transformation," Energy Economics, Elsevier, vol. 92(C).
  33. Simone Speizer & Jay Fuhrman & Laura Aldrete Lopez & Mel George & Page Kyle & Seth Monteith & Haewon McJeon, 2024. "Integrated assessment modeling of a zero-emissions global transportation sector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  34. Gürkan Kumbaroğlu & Cansu Canaz & Jonathan Deason & Ekundayo Shittu, 2020. "Profitable Decarbonization through E-Mobility," Energies, MDPI, vol. 13(16), pages 1-23, August.
  35. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
  36. Li, Nan & Chen, Wenying, 2019. "Energy-water nexus in China's energy bases: From the Paris agreement to the Well Below 2 Degrees target," Energy, Elsevier, vol. 166(C), pages 277-286.
  37. Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
  38. Huang, Weilong & Chen, Wenying & Anandarajah, Gabrial, 2017. "The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model," Applied Energy, Elsevier, vol. 208(C), pages 291-301.
  39. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
  40. Wu, Ya & Zhu, Qianwen & Zhong, Ling & Zhang, Tao, 2019. "Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 349-360.
  41. Li, Nan & Chen, Wenying, 2018. "Modeling China’s interprovincial coal transportation under low carbon transition," Applied Energy, Elsevier, vol. 222(C), pages 267-279.
  42. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
  43. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
  44. Sónia Almeida Neves & António Cardoso Marques & José Alberto Fuinhas, 2018. "Could alternative energy sources in the transport sector decarbonise the economy without compromising economic growth?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 23-40, December.
  45. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
  46. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
  47. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
  48. Pedro Gerber Machado & Dominique Mouette & Luz D. Villanueva & A. Ricardo Esparta & Bruno Mendes Leite & Edmilson Moutinho dos Santos, 2019. "Energy systems modeling: Trends in research publication," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
  49. Yuhua Zheng & Shiqi Li & Shuangshuang Xu, 2019. "Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-26, September.
  50. Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
  51. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
  52. Zhang, Qiang & Chen, Wenying, 2020. "Modeling China’s interprovincial electricity transmission under low carbon transition," Applied Energy, Elsevier, vol. 279(C).
  53. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
  54. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
  55. Yang, Chuxiao & Wu, Haitao & Guo, Yunxia & Hao, Yu, 2024. "Possible carbon circular pathway exploration for oil transition under the consideration of energy supply constraint and uncertainty," Ecological Economics, Elsevier, vol. 222(C).
  56. Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier & Iribarren, Diego, 2020. "Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport," Applied Energy, Elsevier, vol. 259(C).
  57. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
  58. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
  59. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
  60. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2018. "Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption," Energy, Elsevier, vol. 165(PB), pages 223-234.
  61. Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
  62. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
  63. Eimantas Neniškis & Arvydas Galinis & Egidijus Norvaiša, 2021. "Improving Transport Modeling in MESSAGE Energy Planning Model: Vehicle Age Distributions," Energies, MDPI, vol. 14(21), pages 1-16, November.
  64. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
  65. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
  66. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
  67. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
  68. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2018. "Development and application of a life cycle greenhouse gas emission analysis model for mobile air conditioning systems," Applied Energy, Elsevier, vol. 221(C), pages 161-179.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.