IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/2404.html
   My bibliography  Save this paper

Pathways for Pan-European Energy System Decarbonization: The Effect of Emission Policies on Target Alignment

Author

Listed:
  • Theis Madsen
  • Yiannis Kountouris
  • Rasmus Bramstoft
  • Phoebe Koundouri
  • Dogan Keles

Abstract

Decarbonization of the energy system is a major challenge for today's energy system to combat climate change. This challenge is addressed in the EU through different political strategies and plans such as the European Green Deal, Fit-for-55, and REPowerEU, which set specific emission reduction goals for 2030 and 2050. Different mechanisms are in place to achieve these goals, such as the system-wide ETS and the country-level National Energy and Climate Plans. However, there is a difference in the enforcement level between European countries, despite their connection to the same integrated energy system. Hence, there might be discrepancies between the effectiveness of the EU system-level target and the achievements of national goals and plans. To understand and address these discrepancies, we utilize the open-source, sector-coupled energy system optimization model Balmorel to analyze the impact of different decarbonization methods in a fully interconnected, pan-European energy system. In three scenarios, we consider 1) the use of only a system-level carbon budget in line with Fit-for-55 and the European Green Deal, 2) the application of a carbon budget at the country level, and 3) the use of a carbon tax instead of a budget on all production of electricity, heat, and hydrogen. The novelty of this paper lies in the first comparison of these three decarbonization mechanisms and their impact on alignment with policy targets. We demonstrate that the pan-European energy system can reach decarbonization targets across all scenarios. Still, diving from the system perspective into the country level, challenges appear, causing nations to overshoot their allocated budgets. Country-level emission targets are more effective with little cost increase compared to the only system-level target scenario but also cause crossborder effects of fossil fuel based energy production. The carbon tax scenario is the most effective at decarbonizing but comes at up to 27 % higher costs in intermediary years, requiring more early investments.

Suggested Citation

  • Theis Madsen & Yiannis Kountouris & Rasmus Bramstoft & Phoebe Koundouri & Dogan Keles, 2024. "Pathways for Pan-European Energy System Decarbonization: The Effect of Emission Policies on Target Alignment," DEOS Working Papers 2404, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:2404
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/DeCarb.draft.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jonas Meckling & Thomas Sterner & Gernot Wagner, 2017. "Policy sequencing toward decarbonization," Nature Energy, Nature, vol. 2(12), pages 918-922, December.
    2. Zhu, K. & Victoria, M. & Brown, T. & Andresen, G.B. & Greiner, M., 2019. "Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe," Applied Energy, Elsevier, vol. 236(C), pages 622-634.
    3. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    4. Karlo Hainsch & Thorsten Burandt & Konstantin Loffler & Claudia Kemfert & Pao-Yu Oei & Christian von Hirschhausen, 2021. "Emission Pathways Towards a Low-Carbon Energy System for Europe: A Model-Based Analysis of Decarbonization Scenarios," The Energy Journal, , vol. 42(5), pages 41-66, September.
    5. Finn Roar Aune & Rolf Golombek, 2021. "Are Carbon Prices Redundant in the 2030 EU Climate and Energy Policy Package?," The Energy Journal, , vol. 42(3), pages 225-264, May.
    6. Cristina Peñasco & Laura Díaz Anadón & Elena Verdolini, 2021. "Author Correction: Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments," Nature Climate Change, Nature, vol. 11(3), pages 274-274, March.
    7. Cristina Peñasco & Laura Díaz Anadón & Elena Verdolini, 2021. "Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments," Nature Climate Change, Nature, vol. 11(3), pages 257-265, March.
    8. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    9. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chuxiao & Wu, Haitao & Guo, Yunxia & Hao, Yu, 2024. "Possible carbon circular pathway exploration for oil transition under the consideration of energy supply constraint and uncertainty," Ecological Economics, Elsevier, vol. 222(C).
    2. Ivan Faiella & Luciano Lavecchia, 2021. "Households' energy demand and the effects of carbon pricing in Italy," Questioni di Economia e Finanza (Occasional Papers) 614, Bank of Italy, Economic Research and International Relations Area.
    3. Beccarello, Massimo & Di Foggia, Giacomo, 2023. "Meeting decarbonization targets: Techno-economic insights from the Italian scenario," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2.
    4. Faiella, Ivan & Lavecchia, Luciano & Michelangeli, Valentina & Mistretta, Alessandro, 2022. "A climate stress test on the financial vulnerability of Italian households and firms," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 396-417.
    5. Juan S. Mora-Sanguinetti & Andr s Atienza-Maeso, 2023. ""Green regulation": a quantification of regulations related to renewable energies and climate change in Spain and France," Working papers 937, Banque de France.
    6. Li, Guohao & Niu, Miaomiao & Xiao, Jin & Wu, Jiaqian & Li, Jinkai, 2023. "The rebound effect of decarbonization in China’s power sector under the carbon trading scheme," Energy Policy, Elsevier, vol. 177(C).
    7. Doblinger, Claudia & Surana, Kavita & Li, Deyu & Hultman, Nathan & Anadón, Laura Díaz, 2022. "How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers," Research Policy, Elsevier, vol. 51(7).
    8. Peñasco, Cristina, 2024. "From policy to practice: The role of national policy instruments and social barriers in UK energy efficiency adoption in households," Energy Policy, Elsevier, vol. 194(C).
    9. Ackerschott, Adriana & Kohlhase, Esther & Vollmer, Anita & Hörisch, Jacob & von Wehrden, Henrik, 2023. "Steering of land use in the context of sustainable development: A systematic review of economic instruments," Land Use Policy, Elsevier, vol. 129(C).
    10. O'Donoghue, Cathal & Immervoll, Herwig & Gizem, Zeynep & Linden, Jules & Sologon, Denisa, 2024. "The distributional impact of carbon pricing and energy related taxation in Ireland," Papers BP2025/3, Economic and Social Research Institute (ESRI).
    11. Chen, Fanglin & Chen, Zhongfei & Zhang, Xin, 2024. "Belated stock returns for green innovation under carbon emissions trading market," Journal of Corporate Finance, Elsevier, vol. 85(C).
    12. Drews, Stefan & Savin, Ivan & van den Bergh, Jeroen, 2024. "A Global Survey of Scientific Consensus and Controversy on Instruments of Climate Policy," Ecological Economics, Elsevier, vol. 218(C).
    13. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    14. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    15. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    16. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    17. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    18. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    19. Mattauch, Linus & Hepburn, Cameron & Stern, Nicholas, 2018. "Pigou pushes preferences: decarbonisation and endogenous values," INET Oxford Working Papers 2018-16, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    20. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.

    More about this item

    Keywords

    Energy policy; Energy Transition Pathway; Decarbonization Strategies; Balmorel; Energy System Modeling;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • O2 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:2404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ekaterini Glynou (email available below). General contact details of provider: https://edirc.repec.org/data/diauegr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.