IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp223-234.html
   My bibliography  Save this article

Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption

Author

Listed:
  • Wu, Wenqing
  • Ma, Xin
  • Zeng, Bo
  • Wang, Yong
  • Cai, Wei

Abstract

At present, the energy structure of China is shifting towards cleaner and lower amounts of carbon fuel, driven by environmental needs and technological advances. Nuclear energy, which is one of the major low-carbon resources, plays a key role in China's clean energy development. To formulate appropriate energy policies, it is necessary to conduct reliable forecasts. This paper discusses the nuclear energy consumption of China by means of a novel fractional grey model FAGMO(1,1,k). The fractional accumulated generating matrix is introduced to analyse the fractional grey model properties. Thereafter, the modelling procedures of the FAGMO(1,1,k) are presented in detail, along with the transforms of its optimal parameters. A stochastic testing scheme is provided to validate the accuracy and properties of the optimal parameters of the FAGMO(1,1,k). Finally, this model is used to forecast China's nuclear energy consumption and the results demonstrate that the FAGMO(1,1,k) model provides accurate prediction, outperforming other grey models.

Suggested Citation

  • Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2018. "Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption," Energy, Elsevier, vol. 165(PB), pages 223-234.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:223-234
    DOI: 10.1016/j.energy.2018.09.155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    2. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    3. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    4. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    5. Wu, Lifeng & Liu, Sifeng & Fang, Zhigeng & Xu, Haiyan, 2015. "Properties of the GM(1,1) with fractional order accumulation," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 287-293.
    6. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    7. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    8. Wang, Zheng-Xin & Zheng, Hong-Hao & Pei, Ling-Ling & Jin, Tong, 2017. "Decomposition of the factors influencing export fluctuation in China's new energy industry based on a constant market share model," Energy Policy, Elsevier, vol. 109(C), pages 22-35.
    9. Zeng, Bo & Duan, Huiming & Bai, Yun & Meng, Wei, 2018. "Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator," Energy, Elsevier, vol. 151(C), pages 238-249.
    10. Steven A. Gabriel & Andy S. Kydes & Peter Whitman, 2001. "The National Energy Modeling System: A Large-Scale Energy-Economic Equilibrium Model," Operations Research, INFORMS, vol. 49(1), pages 14-25, February.
    11. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    12. Mirza, Faisal Mehmood & Kanwal, Afra, 2017. "Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1233-1240.
    13. Brini, Riadh & Amara, Mohamed & Jemmali, Hatem, 2017. "Renewable energy consumption, International trade, oil price and economic growth inter-linkages: The case of Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 620-627.
    14. Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    2. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    3. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    4. Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
    5. Liu, Yitong & Xue, Dingyu & Yang, Yang, 2021. "Two types of conformable fractional grey interval models and their applications in regional electricity consumption prediction," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    7. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Wang, Meng & Wang, Wei & Wu, Lifeng, 2022. "Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China," Energy, Elsevier, vol. 243(C).
    9. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    10. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    11. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    12. Peng Zhang & Xin Ma & Kun She, 2019. "A Novel Power-Driven Grey Model with Whale Optimization Algorithm and Its Application in Forecasting the Residential Energy Consumption in China," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    13. Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
    14. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    16. Ding, Song & Li, Ruojin & Wu, Shu & Zhou, Weijie, 2021. "Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 298(C).
    17. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    18. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    20. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    2. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    3. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    4. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    5. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    6. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    8. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    9. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    10. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    11. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    12. Wang, Zheng-Xin & He, Ling-Yang & Zheng, Hong-Hao, 2019. "Forecasting the residential solar energy consumption of the United States," Energy, Elsevier, vol. 178(C), pages 610-623.
    13. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
    14. Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
    15. Huang, Weilong & Chen, Wenying & Anandarajah, Gabrial, 2017. "The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model," Applied Energy, Elsevier, vol. 208(C), pages 291-301.
    16. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    17. Huan Zhou & Shaojian Qu & Qinglu Yuan & Shilei Wang, 2020. "Spatial Effects and Nonlinear Analysis of Energy Consumption, Financial Development, and Economic Growth in China," Energies, MDPI, vol. 13(18), pages 1-18, September.
    18. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    19. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Zhu, Qianru & Leibowicz, Benjamin D. & Busby, Joshua W. & Shidore, Sarang & Adelman, David E. & Olmstead, Sheila M., 2022. "Enhancing policy realism in energy system optimization models: Politically feasible decarbonization pathways for the United States," Energy Policy, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:223-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.