IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v175y2016icp100-108.html
   My bibliography  Save this article

Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030

Author

Listed:
  • Zhou, Wenji
  • Wang, Tao
  • Yu, Yadong
  • Chen, Dingjiang
  • Zhu, Bing

Abstract

China’s civil aviation industry has undergone a rapid expansion since the early 1980s, which has resulted in drastic increases in aviation fuel consumption and CO2 emissions. The rapid increase in air transport is expected to continue, which poses critical challenges to this industry in terms of carbon emissions reduction. Despite its importance, an analysis of CO2 emissions with the future development of this industry and the impacts of crucial factors is missing from the literature. To bridge this gap, this study conducts scenario analysis of CO2 emissions from this sector through 2030 and assesses the influences from the key influential factors, including the adoption of low carbon jet fuel, the improvement of fuel intensity due to technological advancements of aircraft, and the increase of air traffic demand. The results show that the air traffic demand has the most significant influence on emissions. The technological improvements in fuel intensity and the adoption of biomass-based fuel appear unlikely to reach the ambitious targets for this industry without a disruptive technological breakthrough. A more comprehensive policy framework, including a carbon tax on jet fuel, R&D support to promote fuel efficiency and a carbon offset scheme etc., is proposed.

Suggested Citation

  • Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
  • Handle: RePEc:eee:appene:v:175:y:2016:i:c:p:100-108
    DOI: 10.1016/j.apenergy.2016.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammond, Geoffrey P. & Seth, Shashank M., 2013. "Carbon and environmental footprinting of global biofuel production," Applied Energy, Elsevier, vol. 112(C), pages 547-559.
    2. repec:dau:papers:123456789/6792 is not listed on IDEAS
    3. Carlsson, Fredrik & Hammar, Henrik, 2002. "Incentive-based regulation of CO2 emissions from international aviation," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 365-372.
    4. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    5. Macintosh, Andrew & Wallace, Lailey, 2009. "International aviation emissions to 2025: Can emissions be stabilised without restricting demand?," Energy Policy, Elsevier, vol. 37(1), pages 264-273, January.
    6. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Tacconi, Daniela, 2014. "Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels," Applied Energy, Elsevier, vol. 136(C), pages 767-774.
    7. Chèze, Benoît & Gastineau, Pascal & Chevallier, Julien, 2011. "Forecasting world and regional aviation jet fuel demands to the mid-term (2025)," Energy Policy, Elsevier, vol. 39(9), pages 5147-5158, September.
    8. Zhang, Chi & Yan, Jinyue, 2015. "CDM’s influence on technology transfers: A study of the implemented clean development mechanism projects in China," Applied Energy, Elsevier, vol. 158(C), pages 355-365.
    9. Edwards, Holly A. & Dixon-Hardy, Darron & Wadud, Zia, 2016. "Aircraft cost index and the future of carbon emissions from air travel," Applied Energy, Elsevier, vol. 164(C), pages 553-562.
    10. Anger, Annela, 2010. "Including aviation in the European emissions trading scheme: Impacts on the industry, CO2 emissions and macroeconomic activity in the EU," Journal of Air Transport Management, Elsevier, vol. 16(2), pages 100-105.
    11. Loo, Becky P.Y. & Li, Linna, 2012. "Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport," Energy Policy, Elsevier, vol. 50(C), pages 464-476.
    12. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    13. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiao & Hang, Ye & Wang, Qunwei & Zhou, Dequn, 2020. "Flying into the future: A scenario-based analysis of carbon emissions from China's civil aviation," Journal of Air Transport Management, Elsevier, vol. 85(C).
    2. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    3. Arthit Champeecharoensuk & Shobhakar Dhakal & Nuwong Chollacoop, 2023. "Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050," Energies, MDPI, vol. 16(20), pages 1-20, October.
    4. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    5. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    6. Linna Li, 2019. "Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition," Transportation, Springer, vol. 46(4), pages 1245-1269, August.
    7. Benoit Cheze & Julien Chevallier & Pascal Gastineau, 2012. "Will technological progress be sufficient to effectively lead the air transport to a sustainable development in the mid-term (2025)?," Working Papers 1207, Chaire Economie du climat.
    8. Vespermann, Jan & Wald, Andreas, 2011. "Much Ado about Nothing? – An analysis of economic impacts and ecologic effects of the EU-emission trading scheme in the aviation industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1066-1076.
    9. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    10. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    11. repec:dau:papers:123456789/9262 is not listed on IDEAS
    12. Alonso, G. & Benito, A. & Lonza, L. & Kousoulidou, M., 2014. "Investigations on the distribution of air transport traffic and CO2 emissions within the European Union," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 85-93.
    13. Benoît Chèze & Julien Chevallier & Pascal Gastineau, 2012. "Will technological progress be sufficient to stabilize CO2 emissions from air transport in the mid-term?," EconomiX Working Papers 2012-35, University of Paris Nanterre, EconomiX.
    14. Achour, Houda & Belloumi, Mounir, 2016. "Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method," Transport Policy, Elsevier, vol. 52(C), pages 64-71.
    15. Liu, Hongwei & Wu, Jie & Chu, Junfei, 2019. "Environmental efficiency and technological progress of transportation industry-based on large scale data," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 475-482.
    16. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Munawar Javed Ahmad, 2021. "Examining the Factors Affecting CO2 Emissions from Road Transportation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 152-159.
    17. Benoît Chèze & Julien Chevallier & Pascal Gastineau, 2012. "Will technological progress be sufficient to stabilize CO2 emissions from air transport in the mid-term?," Working Papers hal-04141052, HAL.
    18. Chin, Anthony T.H. & Zhang, Peng, 2013. "Carbon emission allocation methods for the aviation sector," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 70-76.
    19. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
    20. Amizadeh, Fatemeh & Alonso, Gustavo & Benito, Arturo & Morales-Alonso, Gustavo, 2016. "Analysis of the recent evolution of commercial air traffic CO2 emissions and fleet utilization in the six largest national markets of the European Union," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 9-19.
    21. Peeters, Paul M. & Eijgelaar, Eke, 2014. "Tourism's climate mitigation dilemma: Flying between rich and poor countries," Tourism Management, Elsevier, vol. 40(C), pages 15-26.

    More about this item

    Keywords

    Civil aviation; CO2 emissions; Scenario analysis; China;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:175:y:2016:i:c:p:100-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.