IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/36-11.html
   My bibliography  Save this paper

Average and marginal returns to upper secondary schooling in Indonesia

Author

Listed:
  • Pedro Carneiro

    (Institute for Fiscal Studies and University College London)

  • Michael Lokshin

    (Institute for Fiscal Studies)

  • Cristobal Ridao-Cano

    (Institute for Fiscal Studies)

  • Nithin Umapathi

    (Institute for Fiscal Studies and World Bank)

Abstract

This paper estimates average and marginal returns to schooling in Indonesia using a non-parametric selection model. Identification of the model is given by exogenous geographic variation in access to upper secondary schools. We find that the return to upper secondary schooling varies widely across individuals: it can be as high as 50 percent per year of schooling for those very likely to enroll in upper secondary schooling, or as low as -10 percent for those very unlikely to do so. Average returns for the student at the margin are well below those for the average student attending upper secondary schooling.

Suggested Citation

  • Pedro Carneiro & Michael Lokshin & Cristobal Ridao-Cano & Nithin Umapathi, 2011. "Average and marginal returns to upper secondary schooling in Indonesia," CeMMAP working papers CWP36/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:36/11
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp3611.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    2. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    3. Stephen V. Cameron & Christopher Taber, 2004. "Estimation of Educational Borrowing Constraints Using Returns to Schooling," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 132-182, February.
    4. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    5. Pedro Carneiro & James J. Heckman, 2002. "The Evidence on Credit Constraints in Post--secondary Schooling," Economic Journal, Royal Economic Society, vol. 112(482), pages 705-734, October.
    6. David Card & Thomas Lemieux, 2001. "Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 705-746.
    7. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    8. Esther Duflo, 2001. "Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment," American Economic Review, American Economic Association, vol. 91(4), pages 795-813, September.
    9. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    10. Kling, Jeffrey R, 2001. "Interpreting Instrumental Variables Estimates of the Returns to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 358-364, July.
    11. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016064, January.
    12. George Psacharopoulos & Harry Anthony Patrinos, 2004. "Returns to investment in education: a further update," Education Economics, Taylor & Francis Journals, vol. 12(2), pages 111-134.
    13. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    14. repec:bla:pacecr:v:9:y:2004:i:3:p:155-171 is not listed on IDEAS
    15. Janet Currie & Enrico Moretti, 2003. "Mother's Education and the Intergenerational Transmission of Human Capital: Evidence from College Openings," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(4), pages 1495-1532.
    16. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107638105, January.
    17. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    18. O. Ashenfelter & D. Card (ed.), 1999. "Handbook of Labor Economics," Handbook of Labor Economics, Elsevier, edition 1, volume 3, number 3.
    19. Carneiro, Pedro & Heckman, James J., 2003. "Human Capital Policy," IZA Discussion Papers 821, Institute of Labor Economics (IZA).
    20. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016057, January.
    21. Duflo, Esther, 2004. "The medium run effects of educational expansion: evidence from a large school construction program in Indonesia," Journal of Development Economics, Elsevier, vol. 74(1), pages 163-197, June.
    22. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    23. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    24. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    25. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107674165, January.
    26. Wang, Xiaojun & Fleisher, Belton M. & Li, Haizheng & Li, Shi, 2007. "Access to Higher Education and Inequality: The Chinese Experiment," IZA Discussion Papers 2823, Institute of Labor Economics (IZA).
    27. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers CWP41/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    28. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863, Elsevier.
    29. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    30. Pedro Carneiro & Sokbae Lee, 2011. "Trends in Quality-Adjusted Skill Premia in the United States, 1960-2000," American Economic Review, American Economic Association, vol. 101(6), pages 2309-2349, October.
    31. Hidehiko Ichimura & Christopher R. Taber, 2000. "Direct Estimation of Policy Impacts," NBER Technical Working Papers 0254, National Bureau of Economic Research, Inc.
    32. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    33. Kane, Thomas J & Rouse, Cecilia Elena, 1995. "Labor-Market Returns to Two- and Four-Year College," American Economic Review, American Economic Association, vol. 85(3), pages 600-614, June.
    34. Lorraine Dearden & Leslie McGranahan & Leslie McGranahan & Barbara Sianesi, 2004. "Returns to Education for the Marginal Learner: Evidence from the BCS70," CEE Discussion Papers 0045, Centre for the Economics of Education, LSE.
    35. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107627314, January.
    36. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016040, January.
    37. Carneiro, Pedro, 2010. "Trends in Quality Adjusted Skill Premia in the US, 1960-2000," CEPR Discussion Papers 8108, C.E.P.R. Discussion Papers.
    38. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    39. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    40. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    2. Acerenza, Santiago & Ban, Kyunghoon & Kedagni, Desire, 2021. "Marginal Treatment Effects with Misclassified Treatment," ISU General Staff Papers 202106180700001132, Iowa State University, Department of Economics.
    3. Olivier De Groote & Koen Declercq, 2021. "Tracking and specialization of high schools: Heterogeneous effects of school choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 898-916, November.
    4. Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
    5. Torres Franco, Nicolás Arturo & Dávalos, Eleonora & Morales, Leonardo Fabio, 2021. "Heterogeneous Effects of Agricultural Technical Assistance in Colombia," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 53(4), pages 459-481, November.
    6. Pessino, Carola & Izquierdo, Alejandro & Vuletin, Guillermo, 2018. "Better Spending for Better Lives: How Latin America and the Caribbean Can Do More with Less," IDB Publications (Books), Inter-American Development Bank, number 9152, December.
    7. Adam, Baba & Abdulai, Awudu, 2022. "Heterogeneity in the Impact of Conservation Agriculture Practices on Farm Performance and Inorganic Fertilizer Use in Ghana," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(2), May.
    8. Xinxin Chen & Yaojiang Shi & Di Mo & James Chu & Prashant Loyalka & Scott Rozelle, 2013. "Impact of a Senior High School Tuition Relief Program on Poor Junior High School Students in Rural China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 21(3), pages 80-97, May.
    9. Elisa Gerten & Michael Beckmann & Elisa Gerten & Matthias Kräkel, 2022. "Information and Communication Technology, Hierarchy, and Job Design," ECONtribute Discussion Papers Series 189, University of Bonn and University of Cologne, Germany.
    10. Biewen, Martin & (neé Tapalaga), Madalina Thiele, 2020. "Early tracking, academic vs. vocational training, and the value of ‘second-chance’ options," Labour Economics, Elsevier, vol. 66(C).
    11. Muhammad Fikru Rizal & Nicole Black & David W. Johnston & Rohan Sweeney, 2023. "Long‐term health effects of a school construction program," Health Economics, John Wiley & Sons, Ltd., vol. 32(8), pages 1670-1688, August.
    12. Martin E Andresen & Martin Huber, 2021. "Instrument-based estimation with binarised treatments: issues and tests for the exclusion restriction," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 536-558.
    13. Gathmann, Christina & Vonnahme, Christina & Busse, Anna & Kim, Jongoh, 2021. "Marginal returns to citizenship and educational performance," Ruhr Economic Papers 920, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Nobuyoshi Kikuchi, 2017. "Marginal Returns to Schooling and Education Policy Change in Japan," ISER Discussion Paper 0996r, Institute of Social and Economic Research, Osaka University, revised Oct 2017.
    15. Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
    16. repec:diw:diwwpp:dp2006 is not listed on IDEAS
    17. repec:amu:wpaper:2012-16 is not listed on IDEAS
    18. Nobuyoshi Kikuchi, 2017. "Marginal Returns to Schooling and Education Policy Change in Japan," ISER Discussion Paper 0996, Institute of Social and Economic Research, Osaka University.
    19. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: evidence from an instrumental variable analysis of China's one‐child policy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1615-1635, October.
    20. Leonardo Fabio Morales & Christian Posso & Luz A. Flórez, 2021. "Heterogeneity in the Returns to Tertiary Education for the Disadvantage Youth: Quality vs. Quantity Analysis," Borradores de Economia 1150, Banco de la Republica de Colombia.
    21. Radchenko, Natalia, 2014. "Heterogeneity in Informal Salaried Employment: Evidence from the Egyptian Labor Market Survey," World Development, Elsevier, vol. 62(C), pages 169-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    2. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    3. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    4. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    6. Rojas, Eugenio & Sánchez, Rafael & Villena, Mauricio G., 2016. "Credit constraints in higher education in a context of unobserved heterogeneity," Economics of Education Review, Elsevier, vol. 52(C), pages 225-250.
    7. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    8. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    9. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    10. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    11. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    12. Shoya Ishimaru, 2024. "Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 505-520, March.
    13. Tobias Klein, 2013. "College education and wages in the U.K.: estimating conditional average structural functions in nonadditive models with binary endogenous variables," Empirical Economics, Springer, vol. 44(1), pages 135-161, February.
    14. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    15. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    16. Ge, Suqin, 2013. "Estimating the returns to schooling: Implications from a dynamic discrete choice model," Labour Economics, Elsevier, vol. 20(C), pages 92-105.
    17. Aakvik, Arild & Salvanes, Kjell G. & Vaage, Kjell, 2003. "Measuring Heterogeneity in the Returns to Education in Norway Using Educational Reforms," IZA Discussion Papers 815, Institute of Labor Economics (IZA).
    18. P. Lovaglio & S. Verzillo, 2016. "Heterogeneous economic returns to higher education: evidence from Italy," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 791-822, March.
    19. Akabayashi, Hideo & Ruberg, Tim & Shikishima, Chizuru & Yamashita, Jun, 2023. "Education-oriented and care-oriented preschools: Implications on child development," Labour Economics, Elsevier, vol. 84(C).
    20. Gaurab Aryal & Manudeep Bhuller & Fabian Lange, 2022. "Signaling and Employer Learning with Instruments," American Economic Review, American Economic Association, vol. 112(5), pages 1669-1702, May.

    More about this item

    JEL classification:

    • J2 - Labor and Demographic Economics - - Demand and Supply of Labor
    • J3 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:36/11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.