IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v234y2023i2p394-450.html
   My bibliography  Save this article

Estimation and inference for policy relevant treatment effects

Author

Listed:
  • Sasaki, Yuya
  • Ura, Takuya

Abstract

The policy relevant treatment effect (PRTE) measures the average effect of switching from a status-quo policy to a counterfactual policy under consideration. Estimation of the PRTE involves estimation of multiple preliminary parameters, including propensity scores, conditional expectation functions of the outcome and covariates given the propensity score, and marginal treatment effects. These preliminary estimators can affect the asymptotic distribution of the PRTE estimator in complicated and intractable manners. In this light, we propose an orthogonal score for double debiased estimation of the PRTE, whereby the asymptotic distribution of the PRTE estimator is obtained without any influence of preliminary parameter estimators as far as they satisfy mild requirements of convergence rates. To our knowledge, this paper is the first to develop limit distribution theories for inference about the PRTE.

Suggested Citation

  • Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
  • Handle: RePEc:eee:econom:v:234:y:2023:i:2:p:394-450
    DOI: 10.1016/j.jeconom.2021.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621001494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Will Dobbie & Jae Song, 2015. "Debt Relief and Debtor Outcomes: Measuring the Effects of Consumer Bankruptcy Protection," American Economic Review, American Economic Association, vol. 105(3), pages 1272-1311, March.
    2. Imbens, Guido W, 1992. "An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling," Econometrica, Econometric Society, vol. 60(5), pages 1187-1214, September.
    3. Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
    4. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 71, Elsevier.
    5. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    6. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    7. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    8. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    9. Belskaya, Olga & Peter, Klara Sabirianova & Posso, Christian, 2014. "College Expansion and the Marginal Returns to Education: Evidence from Russia," IZA Discussion Papers 8735, Institute of Labor Economics (IZA).
    10. Alberto Galasso & Mark Schankerman & Carlos J. Serrano, 2013. "Trading and enforcing patent rights," RAND Journal of Economics, RAND Corporation, vol. 44(2), pages 275-312, June.
    11. Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
    12. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    13. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    14. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    15. Lindquist, Matthew J. & Santavirta, Torsten, 2014. "Does placing children in foster care increase their adult criminality?," Labour Economics, Elsevier, vol. 31(C), pages 72-83.
    16. Bryan S. Graham, 2011. "Efficiency Bounds for Missing Data Models With Semiparametric Restrictions," Econometrica, Econometric Society, vol. 79(2), pages 437-452, March.
    17. Juanna Schrøter Joensen & Helena Skyt Nielsen, 2016. "Mathematics and Gender: Heterogeneity in Causes and Consequences," Economic Journal, Royal Economic Society, vol. 126(593), pages 1129-1163, June.
    18. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    19. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    20. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    21. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    22. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    23. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
    24. Anirban Basu & James J. Heckman & Salvador Navarro‐Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self‐selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157, November.
    25. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    26. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    27. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    28. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers CWP67/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    29. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    30. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    31. Meliyanni Johar & Shiko Maruyama, 2014. "Does Coresidence Improve An Elderly Parent'S Health?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 965-983, September.
    32. Kasahara, Hiroyuki & Liang, Yawen & Rodrigue, Joel, 2016. "Does importing intermediates increase the demand for skilled workers? Plant-level evidence from Indonesia," Journal of International Economics, Elsevier, vol. 102(C), pages 242-261.
    33. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    34. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    35. Słoczyński, Tymon & Wooldridge, Jeffrey M., 2018. "A General Double Robustness Result For Estimating Average Treatment Effects," Econometric Theory, Cambridge University Press, vol. 34(1), pages 112-133, February.
    36. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
    37. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    38. M. Christopher Auld, 2005. "Causal effect of early initiation on adolescent smoking patterns," Canadian Journal of Economics, Canadian Economics Association, vol. 38(3), pages 709-734, August.
    39. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    40. Felfe, Christina & Lalive, Rafael, 2018. "Does early child care affect children's development?," Journal of Public Economics, Elsevier, vol. 159(C), pages 33-53.
    41. Hidehiko Ichimura & Christopher R. Taber, 2000. "Direct Estimation of Policy Impacts," NBER Technical Working Papers 0254, National Bureau of Economic Research, Inc.
    42. Joseph J. Doyle Jr., 2008. "Child Protection and Adult Crime: Using Investigator Assignment to Estimate Causal Effects of Foster Care," Journal of Political Economy, University of Chicago Press, vol. 116(4), pages 746-770, August.
    43. Hitomi, Kohtaro & Nishiyama, Yoshihiko & Okui, Ryo, 2008. "A Puzzling Phenomenon In Semiparametric Estimation Problems With Infinite-Dimensional Nuisance Parameters," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1717-1728, December.
    44. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    45. repec:adr:anecst:y:2008:i:91-92:p:12 is not listed on IDEAS
    46. Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(2), pages 451-470, April.
    47. Lewbel, Arthur & Schennach, Susanne M., 2007. "A simple ordered data estimator for inverse density weighted expectations," Journal of Econometrics, Elsevier, vol. 136(1), pages 189-211, January.
    48. M. Christopher Auld, 2005. "Causal effect of early initiation on adolescent smoking patterns," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(3), pages 709-734, August.
    49. J. F. Lawless & J. D. Kalbfleisch & C. J. Wild, 1999. "Semiparametric methods for response‐selective and missing data problems in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 413-438, April.
    50. Chuang, Yih-chyi & Lai, Wei-wen, 2010. "Heterogeneity, comparative advantage, and return to education: The case of Taiwan," Economics of Education Review, Elsevier, vol. 29(5), pages 804-812, October.
    51. Robert Moffitt, 2008. "Estimating Marginal Treatment Effects in Heterogeneous Populations," Annals of Economics and Statistics, GENES, issue 91-92, pages 239-261.
    52. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: An application in breast cancer patients," Health, Econometrics and Data Group (HEDG) Working Papers 07/07, HEDG, c/o Department of Economics, University of York.
    53. Anirban Basu & Anupam B. Jena & Dana P. Goldman & Tomas J. Philipson & Robert Dubois, 2014. "Heterogeneity In Action: The Role Of Passive Personalization In Comparative Effectiveness Research," Health Economics, John Wiley & Sons, Ltd., vol. 23(3), pages 359-373, March.
    54. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    55. Jeffrey M. Wooldridge, 1999. "Asymptotic Properties of Weighted M-Estimators for Variable Probability Samples," Econometrica, Econometric Society, vol. 67(6), pages 1385-1406, November.
    56. Rothe, Christoph & Firpo, Sergio, 2019. "Properties Of Doubly Robust Estimators When Nuisance Functions Are Estimated Nonparametrically," Econometric Theory, Cambridge University Press, vol. 35(5), pages 1048-1087, October.
    57. Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    2. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    3. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    4. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    5. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    6. Gerten, Elisa & Beckmann, Michael & Kräkel, Matthias, 2022. "Information and Communication Technology, Hierarchy, and Job Design," IZA Discussion Papers 15491, Institute of Labor Economics (IZA).
    7. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    8. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    9. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    10. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    11. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    12. Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022. "Estimation of Conditional Average Treatment Effects With High-Dimensional Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
    13. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    14. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    16. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    18. Matthias Westphal & Daniel A Kamhöfer & Hendrik Schmitz, 2022. "Marginal College Wage Premiums Under Selection Into Employment," The Economic Journal, Royal Economic Society, vol. 132(646), pages 2231-2272.
    19. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    20. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.

    More about this item

    Keywords

    Double debiased estimation; Orthogonal score; Policy relevant treatment effects;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:234:y:2023:i:2:p:394-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.