IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.04346.html
   My bibliography  Save this paper

Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects

Author

Listed:
  • Shoya Ishimaru

Abstract

This study proposes an econometric framework to interpret and empirically decompose the difference between IV and OLS estimates given by a linear regression model when the true causal effects of the treatment are nonlinear in treatment levels and heterogeneous across covariates. I show that the IV-OLS coefficient gap consists of three estimable components: the difference in weights on the covariates, the difference in weights on the treatment levels, and the difference in identified marginal effects that arises from endogeneity bias. Applications of this framework to return-to-schooling estimates demonstrate the empirical relevance of this distinction in properly interpreting the IV-OLS gap.

Suggested Citation

  • Shoya Ishimaru, 2021. "Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects," Papers 2101.04346, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:2101.04346
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.04346
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-750, July.
    2. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    3. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    4. Stephen V. Cameron & Christopher Taber, 2004. "Estimation of Educational Borrowing Constraints Using Returns to Schooling," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 132-182, February.
    5. Philip Oreopoulos, 2006. "Estimating Average and Local Average Treatment Effects of Education when Compulsory Schooling Laws Really Matter," American Economic Review, American Economic Association, vol. 96(1), pages 152-175, March.
    6. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    7. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    8. Katrine V. Løken & Magne Mogstad & Matthew Wiswall, 2012. "What Linear Estimators Miss: The Effects of Family Income on Child Outcomes," American Economic Journal: Applied Economics, American Economic Association, vol. 4(2), pages 1-35, April.
    9. Kane, Thomas J & Rouse, Cecilia Elena, 1995. "Labor-Market Returns to Two- and Four-Year College," American Economic Review, American Economic Association, vol. 85(3), pages 600-614, June.
    10. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    11. Kling, Jeffrey R, 2001. "Interpreting Instrumental Variables Estimates of the Returns to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 358-364, July.
    12. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    13. Lance Lochner & Enrico Moretti, 2015. "Estimating and Testing Models with Many Treatment Levels and Limited Instruments," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 387-397, May.
    14. Mogstad, Magne & Wiswall, Matthew, 2009. "How Much Should We Trust Linear Instrumental Variables Estimators? An Application to Family Size and Children's Education," IZA Discussion Papers 4562, Institute of Labor Economics (IZA).
    15. Lang, Kevin, 1993. "Ability Bias, Discount Rate Bias and the Return to Education," MPRA Paper 24651, University Library of Munich, Germany.
    16. O. Ashenfelter & D. Card (ed.), 1999. "Handbook of Labor Economics," Handbook of Labor Economics, Elsevier, edition 1, volume 3, number 3.
    17. Richard Blundell & Joel L. Horowitz, 2007. "A Non-Parametric Test of Exogeneity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1035-1058.
    18. Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 2000. "The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(3), pages 499-527.
    19. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    20. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    21. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    22. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    23. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    24. Kawaguchi, Daiji, 2011. "Actual age at school entry, educational outcomes, and earnings," Journal of the Japanese and International Economies, Elsevier, vol. 25(2), pages 64-80, June.
    25. Yitzhaki, Shlomo, 1996. "On Using Linear Regressions in Welfare Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 478-486, October.
    26. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tymon Sloczynski, 2021. "When Should We (Not) Interpret Linear IV Estimands as LATE?," CESifo Working Paper Series 9064, CESifo.
    2. Shoya Ishimaru, 2021. "What Do We Get from Two-Way Fixed Effects Regressions? Implications from Numerical Equivalence," Papers 2103.12374, arXiv.org, revised Oct 2024.
    3. Klaus Ackermann & Sefa Awaworyi Churchill & Russell Smyth, 2023. "Broadband Internet and Cognitive Functioning," The Economic Record, The Economic Society of Australia, vol. 99(327), pages 536-563, December.
    4. Galofré-Vilà, Gregori, 2023. "Spoils of War: The Political Legacy of the German hyperinflation," Explorations in Economic History, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaurab Aryal & Manudeep Bhuller & Fabian Lange, 2022. "Signaling and Employer Learning with Instruments," American Economic Review, American Economic Association, vol. 112(5), pages 1669-1702, May.
    2. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    3. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    4. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    5. Rojas, Eugenio & Sánchez, Rafael & Villena, Mauricio G., 2016. "Credit constraints in higher education in a context of unobserved heterogeneity," Economics of Education Review, Elsevier, vol. 52(C), pages 225-250.
    6. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    7. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Katrine V. Løken & Magne Mogstad & Matthew Wiswall, 2012. "What Linear Estimators Miss: The Effects of Family Income on Child Outcomes," American Economic Journal: Applied Economics, American Economic Association, vol. 4(2), pages 1-35, April.
    9. Lídia Farré & Roger Klein & Francis Vella, 2013. "A parametric control function approach to estimating the returns to schooling in the absence of exclusion restrictions: an application to the NLSY," Empirical Economics, Springer, vol. 44(1), pages 111-133, February.
    10. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    11. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    12. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    13. Robert Moffit, 2007. "Estimating Marginal Treatment Effects in Heterogeneous Populations," Economics Working Paper Archive 539, The Johns Hopkins University,Department of Economics.
    14. Robert Moffitt, 2007. "Estimating Marginal Returns to Higher Education in the UK," NBER Working Papers 13534, National Bureau of Economic Research, Inc.
    15. Philip Oreopoulos, 2006. "Estimating Average and Local Average Treatment Effects of Education when Compulsory Schooling Laws Really Matter," American Economic Review, American Economic Association, vol. 96(1), pages 152-175, March.
    16. James J. Heckman & Stefano Mosso, 2014. "The Economics of Human Development and Social Mobility," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 689-733, August.
    17. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    18. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    19. Lance Lochner & Enrico Moretti, 2015. "Estimating and Testing Models with Many Treatment Levels and Limited Instruments," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 387-397, May.
    20. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.04346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.