IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v44y2013i1p135-161.html
   My bibliography  Save this article

College education and wages in the U.K.: estimating conditional average structural functions in nonadditive models with binary endogenous variables

Author

Listed:
  • Tobias Klein

Abstract

Recent studies debate how the unobserved dependence between the monetary return to college education and selection into college can be characterised. This paper examines this question using British data. We develop a semiparametric local instrumental variables estimator for identified features of a flexible correlated random coefficient model. These identified features are directly related to the marginal and average treatment effect in policy evaluation. Our results indicate that returns to college systematically differ between actual college graduates and actual college non-graduates. They are on average higher for college graduates and positively related to selection into college for 96% of the individuals. The dependence between selection into college and returns to college education is strongest for individuals with low math test scores at the age of 7, individuals with less educated mothers, and for working-class individuals. Copyright The Author(s) 2013

Suggested Citation

  • Tobias Klein, 2013. "College education and wages in the U.K.: estimating conditional average structural functions in nonadditive models with binary endogenous variables," Empirical Economics, Springer, vol. 44(1), pages 135-161, February.
  • Handle: RePEc:spr:empeco:v:44:y:2013:i:1:p:135-161
    DOI: 10.1007/s00181-010-0355-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-010-0355-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-010-0355-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    2. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    3. James Heckman & Edward Vytlacil, 1998. "Instrumental Variables Methods for the Correlated Random Coefficient Model: Estimating the Average Rate of Return to Schooling When the Return is Correlated with Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 33(4), pages 974-987.
    4. Pedro Carneiro & Costas Meghir & Matthias Parey, 2013. "Maternal Education, Home Environments, And The Development Of Children And Adolescents," Journal of the European Economic Association, European Economic Association, vol. 11, pages 123-160, January.
    5. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    6. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    7. Goldberger, Arthur S, 1989. "Economic and Mechanical Models of Intergenerational Transmission," American Economic Review, American Economic Association, vol. 79(3), pages 504-513, June.
    8. Jacob A. Mincer, 1974. "Introduction to "Schooling, Experience, and Earnings"," NBER Chapters, in: Schooling, Experience, and Earnings, pages 1-4, National Bureau of Economic Research, Inc.
    9. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    10. Janet Currie & Enrico Moretti, 2003. "Mother's Education and the Intergenerational Transmission of Human Capital: Evidence from College Openings," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(4), pages 1495-1532.
    11. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    12. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    13. Hsiao,Cheng & Morimune,Kimio & Powell,James L. (ed.), 2001. "Nonlinear Statistical Modeling," Cambridge Books, Cambridge University Press, number 9780521662468.
    14. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    15. Battistin, Erich & Rettore, Enrico, 2008. "Ineligibles and eligible non-participants as a double comparison group in regression-discontinuity designs," Journal of Econometrics, Elsevier, vol. 142(2), pages 715-730, February.
    16. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    17. Robert Haveman & Barbara Wolfe, 1995. "The Determinants of Children's Attainments: A Review of Methods and Findings," Journal of Economic Literature, American Economic Association, vol. 33(4), pages 1829-1878, December.
    18. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    19. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    20. Jacob A. Mincer, 1974. "Schooling and Earnings," NBER Chapters, in: Schooling, Experience, and Earnings, pages 41-63, National Bureau of Economic Research, Inc.
    21. Jacob A. Mincer, 1974. "Schooling, Experience, and Earnings," NBER Books, National Bureau of Economic Research, Inc, number minc74-1.
    22. Griliches, Zvi, 1977. "Estimating the Returns to Schooling: Some Econometric Problems," Econometrica, Econometric Society, vol. 45(1), pages 1-22, January.
    23. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    24. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    25. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernd Fitzenberger & Michael Lechner & Jeffrey Smith, 2013. "Estimation of treatment effects: recent developments and applications," Empirical Economics, Springer, vol. 44(1), pages 1-11, February.
    2. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    3. Serge Atherwood & Corey S Sparks, 2019. "Early-career trajectories of young workers in the U.S. in the context of the 2008–09 recession: The effect of labor market entry timing," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-30, March.
    4. Benjamin Williams, 2019. "Identification of a nonseparable model under endogeneity using binary proxies for unobserved heterogeneity," Quantitative Economics, Econometric Society, vol. 10(2), pages 527-563, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    2. Heckman, James J. & Schmierer, Daniel, 2010. "Tests of hypotheses arising in the correlated random coefficient model," Economic Modelling, Elsevier, vol. 27(6), pages 1355-1367, November.
    3. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    4. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    5. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    6. Meghir, Costas & Rivkin, Steven, 2011. "Econometric Methods for Research in Education," Handbook of the Economics of Education, in: Erik Hanushek & Stephen Machin & Ludger Woessmann (ed.), Handbook of the Economics of Education, edition 1, volume 3, chapter 1, pages 1-87, Elsevier.
    7. Belzil, Christian & Hansen, Jorgen, 2007. "A structural analysis of the correlated random coefficient wage regression model," Journal of Econometrics, Elsevier, vol. 140(2), pages 827-848, October.
    8. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
    9. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    10. P. Lovaglio & S. Verzillo, 2016. "Heterogeneous economic returns to higher education: evidence from Italy," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 791-822, March.
    11. Harry Patrinos & Chris Sakellariou, 2005. "Schooling and Labor Market Impacts of a Natural Policy Experiment," LABOUR, CEIS, vol. 19(4), pages 705-719, December.
    12. Belzil, Christian & Hansen, Jorgen, 2007. "A structural analysis of the correlated random coefficient wage regression model," Journal of Econometrics, Elsevier, vol. 140(2), pages 827-848, October.
    13. Dionissi Aliprantis, 2017. "Assessing the evidence on neighborhood effects from Moving to Opportunity," Empirical Economics, Springer, vol. 52(3), pages 925-954, May.
    14. Wang, Xiaojun & Fleisher, Belton M. & Li, Haizheng & Li, Shi, 2014. "Access to college and heterogeneous returns to education in China," Economics of Education Review, Elsevier, vol. 42(C), pages 78-92.
    15. Aakvik, Arild & Salvanes, Kjell G. & Vaage, Kjell, 2003. "Measuring Heterogeneity in the Returns to Education in Norway Using Educational Reforms," IZA Discussion Papers 815, Institute of Labor Economics (IZA).
    16. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    17. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    18. Angel de la Fuente & Antonio Ciccone, 2003. "Human capital in a global and knowledge-based economy," UFAE and IAE Working Papers 562.03, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    19. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    20. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.

    More about this item

    Keywords

    Returns to college education; Correlated random coefficient model; Local instrumental variables estimation; C14; C31; J31;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:44:y:2013:i:1:p:135-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.