IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.15634.html
   My bibliography  Save this paper

Distributionally Robust Instrumental Variables Estimation

Author

Listed:
  • Zhaonan Qu
  • Yongchan Kwon

Abstract

Instrumental variables (IV) estimation is a fundamental method in econometrics and statistics for estimating causal effects in the presence of unobserved confounding. However, challenges such as untestable model assumptions and poor finite sample properties have undermined its reliability in practice. Viewing common issues in IV estimation as distributional uncertainties, we propose DRIVE, a distributionally robust framework of the classical IV estimation method. When the ambiguity set is based on a Wasserstein distance, DRIVE minimizes a square root ridge regularized variant of the two stage least squares (TSLS) objective. We develop a novel asymptotic theory for this regularized regression estimator based on the square root ridge, showing that it achieves consistency without requiring the regularization parameter to vanish. This result follows from a fundamental property of the square root ridge, which we call ``delayed shrinkage''. This novel property, which also holds for a class of generalized method of moments (GMM) estimators, ensures that the estimator is robust to distributional uncertainties that persist in large samples. We further derive the asymptotic distribution of Wasserstein DRIVE and propose data-driven procedures to select the regularization parameter based on theoretical results. Simulation studies confirm the superior finite sample performance of Wasserstein DRIVE. Thanks to its regularization and robustness properties, Wasserstein DRIVE could be preferable in practice, particularly when the practitioner is uncertain about model assumptions or distributional shifts in data.

Suggested Citation

  • Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
  • Handle: RePEc:arx:papers:2410.15634
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.15634
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
    2. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    3. Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2021. "From Local to Global: External Validity in a Fertility Natural Experiment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 217-243, January.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    5. Nathan Kallus & Angela Zhou, 2021. "Minimax-Optimal Policy Learning Under Unobserved Confounding," Management Science, INFORMS, vol. 67(5), pages 2870-2890, May.
    6. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    7. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    8. Berkowitz, Daniel & Caner, Mehmet & Fang, Ying, 2008. "Are "Nearly Exogenous Instruments" reliable?," Economics Letters, Elsevier, vol. 101(1), pages 20-23, October.
    9. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    10. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    11. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    12. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    13. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    14. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    15. Young, Alwyn, 2022. "Consistency without inference: instrumental variables in practical application," LSE Research Online Documents on Economics 115011, London School of Economics and Political Science, LSE Library.
    16. Sanderson, Eleanor & Windmeijer, Frank, 2016. "A weak instrument F-test in linear IV models with multiple endogenous variables," Journal of Econometrics, Elsevier, vol. 190(2), pages 212-221.
    17. Bertsimas, Dimitris & Copenhaver, Martin S., 2018. "Characterization of the equivalence of robustification and regularization in linear and matrix regression," European Journal of Operational Research, Elsevier, vol. 270(3), pages 931-942.
    18. Wei Jiang, 2017. "Have Instrumental Variables Brought Us Closer to the Truth," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 6(2), pages 127-140.
    19. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    20. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    21. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    22. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    23. Gary Chamberlain & Guido Imbens, 2004. "Random Effects Estimators with many Instrumental Variables," Econometrica, Econometric Society, vol. 72(1), pages 295-306, January.
    24. Kadane, Joseph B & Anderson, T W, 1977. "A Comment on the Test of Overidentifying Restrictions," Econometrica, Econometric Society, vol. 45(4), pages 1027-1031, May.
    25. Jinyong Hahn & Jerry Hausman, 2010. "Estimation with Valid and Invalid Instruments," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 25-57, National Bureau of Economic Research, Inc.
    26. repec:adr:anecst:y:2005:i:79-80:p:02 is not listed on IDEAS
    27. Martin Emil Jakobsen & Jonas Peters, 2020. "Distributional robustness of K-class estimators and the PULSE," Papers 2005.03353, arXiv.org, revised Mar 2022.
    28. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    29. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    30. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    31. Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(1), pages 270-290, February.
    32. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    33. Donald W. K. Andrews, 1999. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
    34. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    35. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    36. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    37. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2020. "An Adversarial Approach to Structural Estimation," Working Papers 2020-144, Becker Friedman Institute for Research In Economics.
    38. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    39. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    40. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    41. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    42. Young, Alwyn, 2022. "Consistency without Inference: Instrumental Variables in Practical Application," European Economic Review, Elsevier, vol. 147(C).
    43. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    44. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    45. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," SciencePo Working papers Main hal-03936221, HAL.
    46. Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.
    47. Andrew Bennett & Nathan Kallus, 2020. "The Variational Method of Moments," Papers 2012.09422, arXiv.org, revised Mar 2023.
    48. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    49. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    50. McDonald, James B, 1977. "The K-Class Estimators as Least Variance Difference Estimators," Econometrica, Econometric Society, vol. 45(3), pages 759-763, April.
    51. Stephen Burgess & Christopher N Foley & Elias Allara & James R Staley & Joanna M. M. Howson, 2020. "A robust and efficient method for Mendelian randomization with hundreds of genetic variants," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    52. Alfred Galichon, 2021. "The unreasonable effectiveness of optimal transport in economics," Papers 2107.04700, arXiv.org.
    53. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    54. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    55. Small, Dylan S., 2007. "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1049-1058, September.
    56. Yanqin Fan & Hyeonseok Park & Gaoqian Xu, 2023. "Quantifying Distributional Model Risk in Marginal Problems via Optimal Transport," Papers 2307.00779, arXiv.org.
    57. Lihua Lei & Roshni Sahoo & Stefan Wager, 2023. "Policy Learning under Biased Sample Selection," Papers 2304.11735, arXiv.org.
    58. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    59. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    60. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," NBER Working Papers 4483, National Bureau of Economic Research, Inc.
    61. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    62. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    63. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," Working Papers hal-03936221, HAL.
    64. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    65. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    66. Jose Blanchet & Karthyek Murthy & Nian Si, 2022. "Confidence regions in Wasserstein distributionally robust estimation [Distributionally robust groupwise regularization estimator]," Biometrika, Biometrika Trust, vol. 109(2), pages 295-315.
    67. Greg Lewis & Vasilis Syrgkanis, 2018. "Adversarial Generalized Method of Moments," Papers 1803.07164, arXiv.org, revised Apr 2018.
    68. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    2. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    3. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    4. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    5. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    6. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    7. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    8. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    9. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    10. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    11. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    12. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Inoue, Atsushi & Rossi, Barbara, 2011. "Testing for weak identification in possibly nonlinear models," Journal of Econometrics, Elsevier, vol. 161(2), pages 246-261, April.
    14. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    15. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    16. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    17. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    18. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    19. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    20. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    21. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.15634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.