IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i2p215-246.html
   My bibliography  Save this article

Anchor regression: Heterogeneous data meet causality

Author

Listed:
  • Dominik Rothenhäusler
  • Nicolai Meinshausen
  • Peter Bühlmann
  • Jonas Peters

Abstract

We consider the problem of predicting a response variable from a set of covariates on a data set that differs in distribution from the training data. Causal parameters are optimal in terms of predictive accuracy if in the new distribution either many variables are affected by interventions or only some variables are affected, but the perturbations are strong. If the training and test distributions differ by a shift, causal parameters might be too conservative to perform well on the above task. This motivates anchor regression, a method that makes use of exogenous variables to solve a relaxation of the ‘causal’ minimax problem by considering a modification of the least‐squares loss. The procedure naturally provides an interpolation between the solutions of ordinary least squares (OLS) and two‐stage least squares. We prove that the estimator satisfies predictive guarantees in terms of distributional robustness against shifts in a linear class; these guarantees are valid even if the instrumental variable assumptions are violated. If anchor regression and least squares provide the same answer (‘anchor stability’), we establish that OLS parameters are invariant under certain distributional changes. Anchor regression is shown empirically to improve replicability and protect against distributional shifts.

Suggested Citation

  • Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:2:p:215-246
    DOI: 10.1111/rssb.12398
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12398
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-183, January.
    2. Bowden,Roger J. & Turkington,Darrell A., 1990. "Instrumental Variables," Cambridge Books, Cambridge University Press, number 9780521385824, September.
    3. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    4. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    5. Leamer, Edward E, 1978. "Least-Squares versus Instrumental Variables Estimation in a Simple Errors in Variables Model," Econometrica, Econometric Society, vol. 46(4), pages 961-968, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    2. Adam Lund & Søren Wengel Mogensen & Niels Richard Hansen, 2022. "Soft maximin estimation for heterogeneous data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1761-1790, December.
    3. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    4. Malte Londschien & Peter Buhlmann, 2024. "Weak-instrument-robust subvector inference in instrumental variables regression: A subvector Lagrange multiplier test and properties of subvector Anderson-Rubin confidence sets," Papers 2407.15256, arXiv.org, revised Sep 2024.
    5. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Bühlmann & Domagoj Ćevid, 2020. "Deconfounding and Causal Regularisation for Stability and External Validity," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 114-134, December.
    2. Hang Su & Wei Wang, 2024. "Invariant Feature Learning Based on Causal Inference from Heterogeneous Environments," Mathematics, MDPI, vol. 12(5), pages 1-23, February.
    3. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    4. Martin Ravallion, 2022. "On the Gains from Tradable Benefits‐in‐kind: Evidence for Workfare in India," Economica, London School of Economics and Political Science, vol. 89(355), pages 770-787, July.
    5. Peter Abell & Ofer Engel, 2021. "Subjective Causality and Counterfactuals in the Social Sciences: Toward an Ethnographic Causality?," Sociological Methods & Research, , vol. 50(4), pages 1842-1862, November.
    6. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    7. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    8. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    9. Greenaway, David & Torstensson, Johan, 2000. "Economic Geography, Comparative Advantage and Trade within Industries: Evidence from the OECD," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 15, pages 260-280.
    10. Sager, Michael & Taylor, Mark P., 2014. "Generating currency trading rules from the term structure of forward foreign exchange premia," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 230-250.
    11. Salvatore Bimonte & Antonella D’Agostino, 2021. "Tourism development and residents’ well-being: Comparing two seaside destinations in Italy," Tourism Economics, , vol. 27(7), pages 1508-1525, November.
    12. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    13. Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
    14. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    15. Stoker, Thomas M. & Berndt, Ernst R. & Denny Ellerman, A. & Schennach, Susanne M., 2005. "Panel data analysis of U.S. coal productivity," Journal of Econometrics, Elsevier, vol. 127(2), pages 131-164, August.
    16. Christopher R. Bollinger, 2001. "Response Error and the Union Wage Differential," Southern Economic Journal, John Wiley & Sons, vol. 68(1), pages 60-76, July.
    17. Antonio R. Linero, 2022. "Simulation‐based estimators of analytically intractable causal effects," Biometrics, The International Biometric Society, vol. 78(3), pages 1001-1017, September.
    18. Jonathan Temple, 1995. "Testing the augmented Solow Model," Economics Papers 18 & 106., Economics Group, Nuffield College, University of Oxford.
    19. Jesica Escobar & Alexander Poznyak, 2022. "Robust Parametric Identification for ARMAX Models with Non-Gaussian and Coloured Noise: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-38, April.
    20. Berger, Marius & Hottenrott, Hanna, 2021. "Start-up subsidies and the sources of venture capital," Journal of Business Venturing Insights, Elsevier, vol. 16(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:2:p:215-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.