IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.09422.html
   My bibliography  Save this paper

The Variational Method of Moments

Author

Listed:
  • Andrew Bennett
  • Nathan Kallus

Abstract

The conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables, a prominent example being instrumental variable regression. A standard approach reduces the problem to a finite set of marginal moment conditions and applies the optimally weighted generalized method of moments (OWGMM), but this requires we know a finite set of identifying moments, can still be inefficient even if identifying, or can be theoretically efficient but practically unwieldy if we use a growing sieve of moment conditions. Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem, which we term the variational method of moments (VMM) and which naturally enables controlling infinitely-many moments. We provide a detailed theoretical analysis of multiple VMM estimators, including ones based on kernel methods and neural nets, and provide conditions under which these are consistent, asymptotically normal, and semiparametrically efficient in the full conditional moment model. We additionally provide algorithms for valid statistical inference based on the same kind of variational reformulations, both for kernel- and neural-net-based varieties. Finally, we demonstrate the strong performance of our proposed estimation and inference algorithms in a detailed series of synthetic experiments.

Suggested Citation

  • Andrew Bennett & Nathan Kallus, 2020. "The Variational Method of Moments," Papers 2012.09422, arXiv.org, revised Mar 2023.
  • Handle: RePEc:arx:papers:2012.09422
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.09422
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    3. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    4. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    5. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    6. Nishanth Dikkala & Greg Lewis & Lester Mackey & Vasilis Syrgkanis, 2020. "Minimax Estimation of Conditional Moment Models," Papers 2006.07201, arXiv.org.
    7. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    8. Andrew Bennett & Nathan Kallus, 2020. "Efficient Policy Learning from Surrogate-Loss Classification Reductions," Papers 2002.05153, arXiv.org.
    9. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    10. Greg Lewis & Vasilis Syrgkanis, 2018. "Adversarial Generalized Method of Moments," Papers 1803.07164, arXiv.org, revised Apr 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
    2. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    2. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    3. Amit Gandhi & Jean-François Houde, 2019. "Measuring Substitution Patterns in Differentiated-Products Industries," NBER Working Papers 26375, National Bureau of Economic Research, Inc.
    4. Matthew Backus & Christopher Conlon & Michael Sinkinson, 2021. "Common Ownership and Competition in the Ready-to-Eat Cereal Industry," NBER Working Papers 28350, National Bureau of Economic Research, Inc.
    5. Hsu, Shih-Hsun & Kuan, Chung-Ming, 2011. "Estimation of conditional moment restrictions without assuming parameter identifiability in the implied unconditional moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 87-99.
    6. Menzel, Konrad, 2014. "Consistent estimation with many moment inequalities," Journal of Econometrics, Elsevier, vol. 182(2), pages 329-350.
    7. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    8. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
    9. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    10. Steve Berry & Oliver B. Linton & Ariel Pakes, 2004. "Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 613-654.
    11. Maican, Florin G., 2012. "From Boom to Bust and Back Again: A dynamic analysis of IT services," Working Papers in Economics 543, University of Gothenburg, Department of Economics.
    12. Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
    13. Ziyu Wang & Yucen Luo & Yueru Li & Jun Zhu & Bernhard Scholkopf, 2022. "Spectral Representation Learning for Conditional Moment Models," Papers 2210.16525, arXiv.org, revised Dec 2022.
    14. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    15. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    16. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.
    17. Amit Gandhi & Zhentong Lu & Xiaoxia Shi, 2023. "Estimating demand for differentiated products with zeroes in market share data," Quantitative Economics, Econometric Society, vol. 14(2), pages 381-418, May.
    18. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    19. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    20. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    21. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.09422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.