IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v78y2016i5p947-1012.html
   My bibliography  Save this article

Causal inference by using invariant prediction: identification and confidence intervals

Author

Listed:
  • Jonas Peters
  • Peter Bühlmann
  • Nicolai Meinshausen

Abstract

No abstract is available for this item.

Suggested Citation

  • Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
  • Handle: RePEc:bla:jorssb:v:78:y:2016:i:5:p:947-1012
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12167
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoover, Kevin D., 1990. "The Logic of Causal Inference: Econometrics and the Conditional Analysis of Causation," Economics and Philosophy, Cambridge University Press, vol. 6(2), pages 207-234, October.
    2. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    3. Steffen L. Lauritzen & Thomas S. Richardson, 2002. "Chain graph models and their causal interpretations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 321-348, August.
    4. Terza, Joseph V. & Basu, Anirban & Rathouz, Paul J., 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling," Journal of Health Economics, Elsevier, vol. 27(3), pages 531-543, May.
    5. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    6. Cécile Durot & Piet Groeneboom & Hendrik P. Lopuhaä, 2013. "Testing equality of functions under monotonicity constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 939-970, December.
    7. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    8. Alain Hauser & Peter Bühlmann, 2015. "Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 291-318, January.
    9. Odd O. Aalen & Kjetil Røysland & Jon Michael Gran & Bruno Ledergerber, 2012. "Causality, mediation and time: a dynamic viewpoint," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 831-861, October.
    10. J. Peters & P. Bühlmann, 2014. "Identifiability of Gaussian structural equation models with equal error variances," Biometrika, Biometrika Trust, vol. 101(1), pages 219-228.
    11. Tyler J. VanderWeele & James M. Robins, 2010. "Signed directed acyclic graphs for causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 111-127, January.
    12. Rouse, Cecilia Elena, 1995. "Democratization or Diversion? The Effect of Community Colleges on Educational Attainment," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 217-224, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xianzheng & Zhang, Hongmei, 2021. "Tests for differential Gaussian Bayesian networks based on quadratic inference functions," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    3. Federico Castelletti & Guido Consonni, 2020. "Discovering causal structures in Bayesian Gaussian directed acyclic graph models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1727-1745, October.
    4. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    5. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    6. Lenz, Gabriel & Sahn, Alexander, 2017. "Achieving Statistical Significance with Covariates and without Transparency," MetaArXiv s42ba, Center for Open Science.
    7. Lihua Lei & Emmanuel J. Candès, 2021. "Conformal inference of counterfactuals and individual treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 911-938, November.
    8. Hang Su & Wei Wang, 2023. "An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    9. Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.
    10. Anton Rask Lundborg & Rajen D. Shah & Jonas Peters, 2022. "Conditional independence testing in Hilbert spaces with applications to functional data analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1821-1850, November.
    11. Katerina Rigana & Ernst C. Wit & Samantha Cook, 2024. "Navigating Market Turbulence: Insights from Causal Network Contagion Value at Risk," Papers 2402.06032, arXiv.org.
    12. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    13. Hang Su & Wei Wang, 2024. "Invariant Feature Learning Based on Causal Inference from Heterogeneous Environments," Mathematics, MDPI, vol. 12(5), pages 1-23, February.
    14. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    15. Martin Emil Jakobsen & Jonas Peters, 2020. "Distributional robustness of K-class estimators and the PULSE," Papers 2005.03353, arXiv.org, revised Mar 2022.
    16. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    17. Linda Mhalla & Valérie Chavez‐Demoulin & Debbie J. Dupuis, 2020. "Causal mechanism of extreme river discharges in the upper Danube basin network," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 741-764, August.
    18. Peter Bühlmann & Domagoj Ćevid, 2020. "Deconfounding and Causal Regularisation for Stability and External Validity," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 114-134, December.
    19. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    20. Peter Bühlmann, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 330-333, June.
    21. Bühlmann, Peter & van de Geer, Sara, 2018. "Statistics for big data: A perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 37-41.
    22. Wang, Bingling & Zhou, Qing, 2021. "Causal network learning with non-invertible functional relationships," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    23. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Necati Ertekin & Jeffrey D. Shulman & Haipeng (Allan) Chen, 2019. "On the Profitability of Stacked Discounts: Identifying Revenue and Cost Effects of Discount Framing," Marketing Science, INFORMS, vol. 38(2), pages 317-342, March.
    2. Federico Castelletti & Guido Consonni, 2021. "Bayesian inference of causal effects from observational data in Gaussian graphical models," Biometrics, The International Biometric Society, vol. 77(1), pages 136-149, March.
    3. Castelletti, Federico & Peluso, Stefano, 2021. "Equivalence class selection of categorical graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    4. Park, Gunwoong & Kim, Yesool, 2021. "Learning high-dimensional Gaussian linear structural equation models with heterogeneous error variances," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    5. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016. "Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
    6. Federico Castelletti & Guido Consonni, 2020. "Discovering causal structures in Bayesian Gaussian directed acyclic graph models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1727-1745, October.
    7. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    8. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    9. Ji Yan & Sally Brocksen, 2013. "Adolescent risk perception, substance use, and educational attainment," Journal of Risk Research, Taylor & Francis Journals, vol. 16(8), pages 1037-1055, September.
    10. Andrew Boutton, 2019. "Of terrorism and revenue: Why foreign aid exacerbates terrorism in personalist regimes," Conflict Management and Peace Science, Peace Science Society (International), vol. 36(4), pages 359-384, July.
    11. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Martin Ravallion, 2022. "On the Gains from Tradable Benefits‐in‐kind: Evidence for Workfare in India," Economica, London School of Economics and Political Science, vol. 89(355), pages 770-787, July.
    13. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    14. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    15. Peter Abell & Ofer Engel, 2021. "Subjective Causality and Counterfactuals in the Social Sciences: Toward an Ethnographic Causality?," Sociological Methods & Research, , vol. 50(4), pages 1842-1862, November.
    16. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    17. Bian Liu & Serena Zhan & Karen M. Wilson & Madhu Mazumdar & Lihua Li, 2021. "The Influence of Increasing Levels of Provider-Patient Discussion on Quit Behavior: An Instrumental Variable Analysis of a National Survey," IJERPH, MDPI, vol. 18(9), pages 1-11, April.
    18. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    19. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    20. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:78:y:2016:i:5:p:947-1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.