IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v25y2022i2p404-432..html
   My bibliography  Save this article

Distributional robustness of K-class estimators and the PULSE
[The colonial origins of comparative development: An empirical investigation]

Author

Listed:
  • Martin Emil Jakobsen
  • Jonas Peters

Abstract

SummaryWhile causal models are robust in that they are prediction optimal under arbitrarily strong interventions, they may not be optimal when the interventions are bounded. We prove that the classical K-class estimator satisfies such optimality by establishing a connection between K-class estimators and anchor regression. This connection further motivates a novel estimator in instrumental variable settings that minimizes the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal coefficient. We call this estimator PULSE (p-uncorrelated least squares estimator), relate it to work on invariance, show that it can be computed efficiently, as a data-driven K-class estimator, even though the underlying optimization problem is nonconvex, and prove consistency. We evaluate the estimators on real data and perform simulation experiments illustrating that PULSE suffers from less variability. There are several settings, including weak instrument settings, where it outperforms other estimators.

Suggested Citation

  • Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
  • Handle: RePEc:oup:emjrnl:v:25:y:2022:i:2:p:404-432.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utab031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keane, Michael P., 2010. "Structural vs. atheoretic approaches to econometrics," Journal of Econometrics, Elsevier, vol. 156(1), pages 3-20, May.
    2. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    3. Kasey S. Buckles & Daniel M. Hungerman, 2013. "Season of Birth and Later Outcomes: Old Questions, New Answers," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 711-724, July.
    4. David Y. Albouy, 2012. "The Colonial Origins of Comparative Development: An Empirical Investigation: Comment," American Economic Review, American Economic Association, vol. 102(6), pages 3059-3076, October.
    5. Jinyong Hahn & Jerry Hausman, 2010. "Estimation with Valid and Invalid Instruments," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 25-57, National Bureau of Economic Research, Inc.
    6. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    7. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    8. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    9. Magne Mogstad & Matthew Wiswall, 2009. "How Linear Models Can Mask Non-Linear Causal Relationships. An Application to Family Size and Children's Education," Discussion Papers 586, Statistics Norway, Research Department.
    10. Russell Davidson & James G. MacKinnon, 2014. "Confidence sets based on inverting Anderson–Rubin tests," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 39-58, June.
    11. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    12. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    13. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    14. McDonald, James B, 1977. "The K-Class Estimators as Least Variance Difference Estimators," Econometrica, Econometric Society, vol. 45(3), pages 759-763, April.
    15. repec:fth:prinin:317 is not listed on IDEAS
    16. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    17. Kiviet, Jan F., 2020. "Testing the impossible: Identifying exclusion restrictions," Journal of Econometrics, Elsevier, vol. 218(2), pages 294-316.
    18. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    19. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    20. Daron Acemoglu & Simon Johnson & James A. Robinson, 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation," American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
    21. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    22. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    23. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    24. repec:adr:anecst:y:2005:i:79-80:p:02 is not listed on IDEAS
    25. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    26. Gary Chamberlain, 2007. "Decision Theory Applied to an Instrumental Variables Model," Econometrica, Econometric Society, vol. 75(3), pages 609-652, May.
    27. Mariano, Roberto S., 1975. "Some large-concentration-parameter asymptotics for the k-class estimators," Journal of Econometrics, Elsevier, vol. 3(2), pages 171-177, May.
    28. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    29. Mariano, Roberto S, 1972. "The Existence of Moments of the Ordinary Least Squares and Two-Stage Least Squares Estimators," Econometrica, Econometric Society, vol. 40(4), pages 643-652, July.
    30. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    31. Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.
    32. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    33. Kadane, Joseph B, 1971. "Comparison of k-Class Estimators when the Disturbances are Small," Econometrica, Econometric Society, vol. 39(5), pages 723-737, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malte Londschien & Peter Buhlmann, 2024. "Weak-instrument-robust subvector inference in instrumental variables regression: A subvector Lagrange multiplier test and properties of subvector Anderson-Rubin confidence sets," Papers 2407.15256, arXiv.org, revised Nov 2024.
    2. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    2. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    3. Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
    4. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    5. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    6. Hyunseung Kang & Laura Peck & Luke Keele, 2018. "Inference for instrumental variables: a randomization inference approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1231-1254, October.
    7. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    8. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Martin Emil Jakobsen & Jonas Peters, 2020. "Distributional robustness of K-class estimators and the PULSE," Papers 2005.03353, arXiv.org, revised Mar 2022.
    10. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    11. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    12. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    13. Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
    14. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    15. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    16. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    17. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    18. Brendan Kline, 2016. "Identification of the Direction of a Causal Effect by Instrumental Variables," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 176-184, April.
    19. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    20. Xiaolin Sun, 2022. "Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach," Papers 2210.15829, arXiv.org, revised Oct 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:25:y:2022:i:2:p:404-432.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.