Minimax-Optimal Policy Learning Under Unobserved Confounding
Author
Abstract
Suggested Citation
DOI: 10.1287/mnsc.2020.3699
Download full text from publisher
References listed on IDEAS
- Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Jesse Y. Hsu & Dylan S. Small, 2013. "Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 803-811, December.
- Brett R. Gordon & Florian Zettelmeyer & Neha Bhargava & Dan Chapsky, 2019. "A Comparison of Approaches to Advertising Measurement: Evidence from Big Field Experiments at Facebook," Marketing Science, INFORMS, vol. 38(2), pages 193-225, March.
- A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
- Ross L. Prentice & Mary Pettinger & Garnet L. Anderson, 2005. "Statistical Issues Arising in the Women's Health Initiative," Biometrics, The International Biometric Society, vol. 61(4), pages 899-911, December.
- Qingyuan Zhao & Dylan S. Small & Bhaswar B. Bhattacharya, 2019. "Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 735-761, September.
- L W Miratrix & S Wager & J R Zubizarreta, 2018. "Shape-constrained partial identification of a population mean under unknown probabilities of sample selection," Biometrika, Biometrika Trust, vol. 105(1), pages 103-114.
- Teck-Hua Ho & Noah Lim & Sadat Reza & Xiaoyu Xia, 2017. "OM Forum—Causal Inference Models in Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 509-525, October.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
- Colin B. Fogarty & Dylan S. Small, 2016. "Sensitivity Analysis for Multiple Comparisons in Matched Observational Studies Through Quadratically Constrained Linear Programming," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1820-1830, October.
- Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
- Raiden Hasegawa & Dylan Small, 2017. "Sensitivity analysis for matched pair analysis of binary data: From worst case to average case analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1424-1432, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
- Yuchen Hu & Henry Zhu & Emma Brunskill & Stefan Wager, 2024. "Minimax-Regret Sample Selection in Randomized Experiments," Papers 2403.01386, arXiv.org, revised Jun 2024.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2023. "Predictive Incrementality by Experimentation (PIE) for Ad Measurement," Papers 2304.06828, arXiv.org.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Working Papers
2201, Tulane University, Department of Economics.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for a Continuous Treatment," Papers 2402.02535, arXiv.org.
- Paul B. Ellickson & Wreetabrata Kar & James C. Reeder, 2023. "Estimating Marketing Component Effects: Double Machine Learning from Targeted Digital Promotions," Marketing Science, INFORMS, vol. 42(4), pages 704-728, July.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020.
"Optimal data collection for randomized control trials,"
The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 15/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 45/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Carneiro, Pedro & Lee, Sokbae & Wilhelm, Daniel, 2016. "Optimal Data Collection for Randomized Control Trials," IZA Discussion Papers 9908, Institute of Labor Economics (IZA).
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2019. "Optimal Data Collection for Randomized Control Trials," CeMMAP working papers CWP21/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers 15/16, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP45/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2016. "Optimal Data Collection for Randomized Control Trials," Papers 1603.03675, arXiv.org, revised Aug 2016.
- Sung Jae Jun & Sokbae Lee, 2024.
"Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
- Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
- Manski, Charles F., 2023.
"Probabilistic prediction for binary treatment choice: With focus on personalized medicine,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine," NBER Working Papers 29358, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine," Papers 2110.00864, arXiv.org.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Charles F. Manski, 2020. "Towards Reasonable Patient Care Under Uncertainty," Contemporary Economic Policy, Western Economic Association International, vol. 38(2), pages 227-245, April.
More about this item
Keywords
policy learning; optimization; causal inference; personalized medicine; data-driven decision making;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:67:y:2021:i:5:p:2870-2890. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.