IDEAS home Printed from https://ideas.repec.org/p/bri/uobdis/19-715.html
   My bibliography  Save this paper

The Confidence Interval Method for Selecting Valid Instrumental Variables

Author

Listed:
  • Frank Windmeijer
  • Xiaoran Liang
  • Fernando P Hartwig
  • Jack Bowden

Abstract

We propose a new method, the conÂ…dence interval (CI) method, to select valid instruments from a set of potential instruments that may contain invalid ones, for instrumental variables estimation of the causal effect of an exposure on an outcome. Invalid instruments are such that they fail the exclusion restriction and enter the model as explanatory variables. The CI method is based on the conÂ…dence intervals of the per instrument causal effects estimates. Each instrument speciÂ…fic causal effect estimate is obtained whilst treating all other instruments as invalid. The CI method selects the largest group with all conÂ…dence intervals overlapping with each other as the set of valid instruments. Under a plurality rule, we show that the resulting IV, or two-stage least squares (2SLS) estimator has oracle properties, meaning that it has the same limiting distribution as the oracle 2SLS estimator with the set of invalid instruments known. This result is the same as for the hard thresholding with voting (HT) method of Guo et al. (2018). Unlike the HT method, the number of instruments selected as valid by the CI method is guaranteed to be monotonically decreasing for decreasing values of the tuning parameter, which determines the width of the conÂ…dence intervals. For the CI method, we can therefore use a downward testing procedure based on the Sargan test for overidentifying restrictions. We Â…find in a simulation design similar to that of Guo et al. (2018) better properties for the CI method based estimation and inference than for the HT method and in an application of the effect of BMI on blood pressure that the CI method is better able to detect invalid instruments.

Suggested Citation

  • Frank Windmeijer & Xiaoran Liang & Fernando P Hartwig & Jack Bowden, 2019. "The Confidence Interval Method for Selecting Valid Instrumental Variables," Bristol Economics Discussion Papers 19/715, School of Economics, University of Bristol, UK.
  • Handle: RePEc:bri:uobdis:19/715
    as

    Download full text from publisher

    File URL: http://www.bristol.ac.uk/efm/media/workingpapers/working_papers/pdffiles/dp19715.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    3. Zijian Guo & Hyunseung Kang & T. Tony Cai & Dylan S. Small, 2018. "Confidence intervals for causal effects with invalid instruments by using two‐stage hard thresholding with voting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 793-815, September.
    4. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    5. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    6. Donald W. K. Andrews, 1999. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
    7. Paul S. Clarke & Frank Windmeijer, 2012. "Instrumental Variable Estimators for Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1638-1652, December.
    8. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    9. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    10. Frank Windmeijer, 2019. "Two-stage least squares as minimum distance," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 1-9.
    11. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    12. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    13. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    14. Adam E. Locke & Bratati Kahali & Sonja I. Berndt & Anne E. Justice & Tune H. Pers & Felix R. Day & Corey Powell & Sailaja Vedantam & Martin L. Buchkovich & Jian Yang & Damien C. Croteau-Chonka & Tonu , 2015. "Genetic studies of body mass index yield new insights for obesity biology," Nature, Nature, vol. 518(7538), pages 197-206, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, X.; & Sanderson, E.; & Windmeijer, F.;, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Health, Econometrics and Data Group (HEDG) Working Papers 22/22, HEDG, c/o Department of Economics, University of York.
    2. Cavicchioli, Maddalena, 2023. "Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    3. Biewen, Martin & Fitzenberger, Bernd & Seckler, Matthias, 2020. "Counterfactual quantile decompositions with selection correction taking into account Huber/Melly (2015): An application to the German gender wage gap," Labour Economics, Elsevier, vol. 67(C).
    4. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    5. Nicolas Apfel & Julia Hatamyar & Martin Huber & Jannis Kueck, 2024. "Learning control variables and instruments for causal analysis in observational data," Papers 2407.04448, arXiv.org.
    6. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    7. Nicolas Apfel & Helmut Farbmacher & Rebecca Groh & Martin Huber & Henrika Langen, 2022. "Detecting Grouped Local Average Treatment Effects and Selecting True Instruments," Papers 2207.04481, arXiv.org, revised Oct 2023.
    8. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    9. Nicolas Apfel & Frank Windmeijer, 2022. "The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exclusion or Conditional Exogeneity Restriction," Papers 2212.04814, arXiv.org, revised Apr 2024.
    10. Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    2. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    3. Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.
    4. Nicolas Apfel & Frank Windmeijer, 2022. "The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exclusion or Conditional Exogeneity Restriction," Papers 2212.04814, arXiv.org, revised Apr 2024.
    5. Hyunseung Kang & Youjin Lee & T. Tony Cai & Dylan S. Small, 2022. "Two robust tools for inference about causal effects with invalid instruments," Biometrics, The International Biometric Society, vol. 78(1), pages 24-34, March.
    6. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    7. Xiaoran Liang & Eleanor Sanderson & Frank Windmeijer, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Papers 2208.05278, arXiv.org.
    8. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    9. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    10. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    11. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    12. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    13. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    14. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    15. Nicolas Apfel & Helmut Farbmacher & Rebecca Groh & Martin Huber & Henrika Langen, 2022. "Detecting Grouped Local Average Treatment Effects and Selecting True Instruments," Papers 2207.04481, arXiv.org, revised Oct 2023.
    16. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    17. Sheng Wang & Hyunseung Kang, 2022. "Weak‐instrument robust tests in two‐sample summary‐data Mendelian randomization," Biometrics, The International Biometric Society, vol. 78(4), pages 1699-1713, December.
    18. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
    19. Kumari, Meena & Bao, Yanchun & S. Clarke, Paul & Smart, Melissa, 2018. "A comparison of robust methods for Mendelian randomization using multiple genetic variants," ISER Working Paper Series 2018-08, Institute for Social and Economic Research.
    20. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
    21. repec:wsr:wpaper:y:2010:i:057 is not listed on IDEAS
    22. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.

    More about this item

    Keywords

    Causal inference; Instrumental variables; Invalid instruments;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bri:uobdis:19/715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vicky Jackson (email available below). General contact details of provider: https://edirc.repec.org/data/sebriuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.