Confidence Intervals of Treatment Effects in Panel Data Models with Interactive Fixed Effects
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
References listed on IDEAS
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021.
"The Augmented Synthetic Control Method,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1789-1803, October.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2018. "The Augmented Synthetic Control Method," Papers 1811.04170, arXiv.org, revised Jul 2020.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "The Augmented Synthetic Control Method," NBER Working Papers 28885, National Bureau of Economic Research, Inc.
- M. Hashem Pesaran, 2006.
"Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure,"
Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
- M. Hashem Pesaran, 2004. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," CESifo Working Paper Series 1331, CESifo.
- Hyungsik Roger Moon & Martin Weidner, 2015.
"Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects,"
Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
- Hyungsik Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP49/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP35/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
- Laurent Gobillon & Thierry Magnac, 2016.
"Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls,"
The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," IDEI Working Papers 786, Institut d'Économie Industrielle (IDEI), Toulouse.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," TSE Working Papers 13-419, Toulouse School of Economics (TSE).
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE-Ecole d'économie de Paris (Postprint) halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Control," CESifo Working Paper Series 5077, CESifo.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," IZA Discussion Papers 7493, Institute of Labor Economics (IZA).
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Working Papers halshs-00849071, HAL.
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Post-Print halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE Working Papers halshs-00849071, HAL.
- Magnac, Thierry & Gobillon, Laurent, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," CEPR Discussion Papers 10253, C.E.P.R. Discussion Papers.
- Gonçalves, Sílvia & Perron, Benoit, 2014.
"Bootstrapping factor-augmented regression models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
- Silvia Gonçalves & Benoit Perron, 2012. "Bootstrapping factor-augmented regression models," CIRANO Working Papers 2012s-12, CIRANO.
- Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009.
"Panel cointegration with global stochastic trends,"
Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
- Jushan Bai & Chihwa Kao & Serena Ng, 2007. "Panel Cointegration with Global Stochastic Trends," Center for Policy Research Working Papers 90, Center for Policy Research, Maxwell School, Syracuse University.
- Ricardo Masini & Marcelo C. Medeiros, 2021. "Counterfactual Analysis With Artificial Controls: Inference, High Dimensions, and Nonstationarity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1773-1788, October.
- Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2017.
"Bootstrap Prediction Intervals for Factor Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 53-69, January.
- Silvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2016. "Bootstrap prediction intervals for factor models," CIRANO Working Papers 2016s-19, CIRANO.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021.
"Synthetic Difference-in-Differences,"
American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2019. "Synthetic Difference in Differences," Working Papers wp2019_1907, CEMFI.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2019. "Synthetic Difference In Differences," NBER Working Papers 25532, National Bureau of Economic Research, Inc.
- Jiti Gao & Bin Peng & Yayi Yan, 2022. "A Simple Bootstrap Method for Panel Data Inferences," Monash Econometrics and Business Statistics Working Papers 7/22, Monash University, Department of Econometrics and Business Statistics.
- Joon Y. Park, 2003.
"Bootstrap Unit Root Tests,"
Econometrica, Econometric Society, vol. 71(6), pages 1845-1895, November.
- Joon Y. Park, 2000. "Bootstrap Unit Root Tests," Econometric Society World Congress 2000 Contributed Papers 1587, Econometric Society.
- Park, Joon, 2002. "Bootstrap Unit Root Tests," Working Papers 2003-04, Rice University, Department of Economics.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021.
"Matrix Completion Methods for Causal Panel Data Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2017. "Matrix Completion Methods for Causal Panel Data Models," Papers 1710.10251, arXiv.org, revised Apr 2022.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2018. "Matrix Completion Methods for Causal Panel Data Models," NBER Working Papers 25132, National Bureau of Economic Research, Inc.
- Kathleen T. Li, 2020. "Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2068-2083, December.
- Gonçalves, Sílvia & Perron, Benoit, 2020.
"Bootstrapping factor models with cross sectional dependence,"
Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
- Sílvia GONÇALVES & Benoit PERRON, 2018. "Bootstrapping Factor Models With Cross Sectional Dependence," Cahiers de recherche 10-2018, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- GONÇALVES, Sílvia & PERRON, Benoit, 2018. "Bootstrapping factor models with cross sectional dependence," Cahiers de recherche 2018-07, Universite de Montreal, Departement de sciences economiques.
- Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
- Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013.
"A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 567-589, June.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers CWP11/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers 11/12, Institute for Fiscal Studies.
- Fujiki, Hiroshi & Hsiao, Cheng, 2015.
"Disentangling the effects of multiple treatments—Measuring the net economic impact of the 1995 great Hanshin-Awaji earthquake,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 66-73.
- Hiroshi Fujiki & Cheng Hsiao, 2013. "Disentangling the Effects of Multiple Treatments - Measuring the Net Economic Impact of the 1995 Great Hanshin-Awaji Earthquake," IMES Discussion Paper Series 13-E-03, Institute for Monetary and Economic Studies, Bank of Japan.
- Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022.
"Synthetic controls with staggered adoption,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2019. "Synthetic Controls with Staggered Adoption," Papers 1912.03290, arXiv.org, revised Jan 2021.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "Synthetic Controls with Staggered Adoption," NBER Working Papers 28886, National Bureau of Economic Research, Inc.
- Jushan Bai & Serena Ng, 2004.
"A PANIC Attack on Unit Roots and Cointegration,"
Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
- Jushan Bai & Serena Ng, 2001. "A PANIC Attack on Unit Roots and Cointegration," Boston College Working Papers in Economics 519, Boston College Department of Economics.
- Jushan Bai & Serena Ng, 2001. "A Panic Attack on Unit Roots and Cointegration," Economics Working Paper Archive 469, The Johns Hopkins University,Department of Economics.
- M. Hashem Pesaran, 2007.
"A simple panel unit root test in the presence of cross-section dependence,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
- Pesaran, M.H., 2003. "A Simple Panel Unit Root Test in the Presence of Cross Section Dependence," Cambridge Working Papers in Economics 0346, Faculty of Economics, University of Cambridge.
- Shao, Xiaofeng, 2010. "The Dependent Wild Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 218-235.
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021.
"An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers 62/17, Institute for Fiscal Studies.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," University of California at San Diego, Economics Working Paper Series qt90m9d66s, Department of Economics, UC San Diego.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers CWP62/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2017. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Papers 1712.09089, arXiv.org, revised May 2021.
- Matias D. Cattaneo & Yingjie Feng & Rocio Titiunik, 2021.
"Prediction Intervals for Synthetic Control Methods,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1865-1880, October.
- Matias D. Cattaneo & Yingjie Feng & Rocio Titiunik, 2019. "Prediction Intervals for Synthetic Control Methods," Papers 1912.07120, arXiv.org, revised Sep 2021.
- Li, Kathleen T. & Bell, David R., 2017. "Estimation of average treatment effects with panel data: Asymptotic theory and implementation," Journal of Econometrics, Elsevier, vol. 197(1), pages 65-75.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Jushan Bai & Serena Ng, 2021.
"Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
- Jushan Bai & Serena Ng, 2019. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Papers 1910.06677, arXiv.org, revised Aug 2021.
- Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
- Bruno Ferman & Cristine Pinto, 2021.
"Synthetic controls with imperfect pretreatment fit,"
Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
- Bruno Ferman & Cristine Pinto, 2019. "Synthetic Controls with Imperfect Pre-Treatment Fit," Papers 1911.08521, arXiv.org, revised Jan 2021.
- Cheng Hsiao & Yan Shen & Qiankun Zhou, 2022. "Multiple Treatment Effects in Panel-Heterogeneity and Aggregation," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Panel Modeling, Micro Applications, and Econometric Methodology, volume 43, pages 81-101, Emerald Group Publishing Limited.
- Ouyang, Min & Peng, Yulei, 2015. "The treatment-effect estimation: A case study of the 2008 economic stimulus package of China," Journal of Econometrics, Elsevier, vol. 188(2), pages 545-557.
- Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
- Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2022.
"Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 574-590, April.
- Jianqing Fan & Ricardo P. Masini & Marcelo C. Medeiros, 2020. "Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction," Papers 2011.03996, arXiv.org, revised Jan 2022.
- Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
- Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
- Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018.
"ArCo: An artificial counterfactual approach for high-dimensional panel time-series data,"
Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
- Carlos Viana de Carvalho & Ricardo Masini & Marcelo Cunha Medeiros, 2016. "ARCO: an artificial counterfactual approach for high-dimensional panel time-series data," Textos para discussão 653, Department of Economics PUC-Rio (Brazil).
- Carvalho, Carlos Viana de & Masini, Ricardo Pereira & Medeiros, Marcelo C., 2017. "Arco: an artificial counterfactual approach for high-dimensional panel time-series data," Textos para discussão 454, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
- Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
- Dukpa Kim & Tatsushi Oka, 2014. "Divorce Law Reforms And Divorce Rates In The Usa: An Interactive Fixed‐Effects Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 231-245, March.
- Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Cheng Hsiao & Qiankun Zhou, 2019. "Panel parametric, semiparametric, and nonparametric construction of counterfactuals," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 463-481, June.
- Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
- Alberto Abadie & Jérémy L’Hour, 2021. "A Penalized Synthetic Control Estimator for Disaggregated Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1817-1834, October.
- Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002.
"Unit root tests in panel data: asymptotic and finite-sample properties,"
Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
- Tom Doan, "undated". "LEVINLIN: RATS procedure to perform Levin-Lin-Chu test for unit roots in panel data," Statistical Software Components RTS00242, Boston College Department of Economics.
- Maxwell Kellogg & Magne Mogstad & Guillaume A. Pouliot & Alexander Torgovitsky, 2021. "Combining Matching and Synthetic Control to Tradeoff Biases From Extrapolation and Interpolation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1804-1816, October.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Callaway, Brantly & Karami, Sonia, 2023.
"Treatment effects in interactive fixed effects models with a small number of time periods,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
- Brantly Callaway & Sonia Karami, 2020. "Treatment Effects in Interactive Fixed Effects Models with a Small Number of Time Periods," Papers 2006.15780, arXiv.org, revised Feb 2022.
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
- David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
- Bruno Ferman & Cristine Pinto, 2021.
"Synthetic controls with imperfect pretreatment fit,"
Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
- Bruno Ferman & Cristine Pinto, 2019. "Synthetic Controls with Imperfect Pre-Treatment Fit," Papers 1911.08521, arXiv.org, revised Jan 2021.
- Stefano, Roberta di & Mellace, Giovanni, 2020.
"The inclusive synthetic control method,"
Discussion Papers on Economics
14/2020, University of Southern Denmark, Department of Economics.
- Roberta Di Stefano & Giovanni Mellace, 2020. "The inclusive synthetic control method," Working Papers 21/20, Sapienza University of Rome, DISS.
- Roberta Di Stefano & Giovanni Mellace, 2024. "The inclusive Synthetic Control Method," Papers 2403.17624, arXiv.org, revised Nov 2024.
- Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
- Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Zongwu Cai & Ying Fang & Ming Lin & Zixuan Wu, 2023. "A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202305, University of Kansas, Department of Economics, revised Aug 2023.
- Rong J. B. Zhu, 2023. "Synthetic Regressing Control Method," Papers 2306.02584, arXiv.org, revised Oct 2023.
- Nuno Garoupa & Rok Spruk, 2024. "Populist Constitutional Backsliding and Judicial Independence: Evidence from Turkiye," Papers 2410.02439, arXiv.org.
- Luis Costa & Vivek F. Farias & Patricio Foncea & Jingyuan (Donna) Gan & Ayush Garg & Ivo Rosa Montenegro & Kumarjit Pathak & Tianyi Peng & Dusan Popovic, 2023. "Generalized Synthetic Control for TestOps at ABI: Models, Algorithms, and Infrastructure," Interfaces, INFORMS, vol. 53(5), pages 336-349, September.
- Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
- Ryan Rafaty & Geoffroy Dolphin & Felix Pretis, 2020.
"Carbon pricing and the elasticity of CO2 emissions,"
Working Papers
EPRG2035, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
- Rafaty, Ryan & Dolphin, Geoffroy & Pretis, Felix, 2021. "Carbon Pricing and the Elasticity of CO2 Emissions," RFF Working Paper Series 21-33, Resources for the Future.
- Ryan Rafaty & Geoffroy Dolphin & Felix Pretis, 2020. "Carbon Pricing and the Elasticity of CO2 Emissions," Working Papers Series inetwp140, Institute for New Economic Thinking.
- Bai, Jushan & Wang, Peng, 2024. "Causal inference using factor models," MPRA Paper 120585, University Library of Munich, Germany.
- Matias D. Cattaneo & Yingjie Feng & Filippo Palomba & Rocio Titiunik, 2022. "scpi: Uncertainty Quantification for Synthetic Control Methods," Papers 2202.05984, arXiv.org, revised Oct 2022.
- Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209, arXiv.org, revised Mar 2024.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021.
"Matrix Completion Methods for Causal Panel Data Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2017. "Matrix Completion Methods for Causal Panel Data Models," Papers 1710.10251, arXiv.org, revised Apr 2022.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2018. "Matrix Completion Methods for Causal Panel Data Models," NBER Working Papers 25132, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
- I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2022-03-21 (Banking)
- NEP-ECM-2022-03-21 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.12078. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.