IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i532p2068-2083.html
   My bibliography  Save this article

Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods

Author

Listed:
  • Kathleen T. Li

Abstract

The synthetic control (SC) method, a powerful tool for estimating average treatment effects (ATE), is increasingly popular in fields such as statistics, economics, political science, and marketing. The SC is particularly suitable for estimating ATE with a single (or a few) treated unit(s), a fixed number of control units, and large pre and post-treatment periods (which we refer as “long panels”). To date, there has been no formal inference theory for SC ATE estimator with long panels under general conditions. Existing work mostly use placebo tests for inference or some permutation methods when the post-treatment period is small. In this article, we derive the asymptotic distribution of the SC and modified synthetic control (MSC) ATE estimators using projection theory. We show that a properly designed subsampling method can be used to obtain confidence intervals and conduct inference whereas the standard bootstrap cannot. Simulations and an empirical application that examines the effect of opening a physical showroom by an e-tailer demonstrate the usefulness of the MSC method in applications.Supplementary materials for this article are available online.

Suggested Citation

  • Kathleen T. Li, 2020. "Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2068-2083, December.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:2068-2083
    DOI: 10.1080/01621459.2019.1686986
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1686986
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1686986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:2068-2083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.