Bootstrap prediction intervals for factor models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2017. "Bootstrap Prediction Intervals for Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 53-69, January.
References listed on IDEAS
- Antoine Djogbenou & Silvia Gonçalves & Benoit Perron, 2015. "Bootstrap inference in regressions with estimated factors and serial correlation," CIRANO Working Papers 2015s-20, CIRANO.
- Gonçalves, Sílvia & Perron, Benoit, 2014.
"Bootstrapping factor-augmented regression models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
- Silvia Gonçalves & Benoit Perron, 2012. "Bootstrapping factor-augmented regression models," CIRANO Working Papers 2012s-12, CIRANO.
- Pan, Li & Politis, Dimitris N, 2014. "Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions," University of California at San Diego, Economics Working Paper Series qt67h5s74t, Department of Economics, UC San Diego.
- Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
- Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
- Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024.
"Expecting the unexpected: Stressed scenarios for economic growth,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
- Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2023. "Expecting the unexpected: Stressed scenarios for economic growth," Working Papers 202314, University of California at Riverside, Department of Economics.
- Cheng, Tingting & Gao, Jiti & Yan, Yayi, 2019.
"Regime switching panel data models with interactive fixed effects,"
Economics Letters, Elsevier, vol. 177(C), pages 47-51.
- Tingting Cheng & Jiti Gao & Yayi Yan, 2018. "Regime switching panel data models with interative fixed effects," Monash Econometrics and Business Statistics Working Papers 21/18, Monash University, Department of Econometrics and Business Statistics.
- Antoine Djogbenou & Silvia Gonçalves & Benoit Perron, 2015. "Bootstrap inference in regressions with estimated factors and serial correlation," CIRANO Working Papers 2015s-20, CIRANO.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Gonçalves, Sílvia & Perron, Benoit, 2020.
"Bootstrapping factor models with cross sectional dependence,"
Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
- Sílvia GONÇALVES & Benoit PERRON, 2018. "Bootstrapping Factor Models With Cross Sectional Dependence," Cahiers de recherche 10-2018, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- GONÇALVES, Sílvia & PERRON, Benoit, 2018. "Bootstrapping factor models with cross sectional dependence," Cahiers de recherche 2018-07, Universite de Montreal, Departement de sciences economiques.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017.
"Density Forecasts With Midas Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
- Yohei Yamamoto & Naoko Hara, 2022.
"Identifying factor‐augmented vector autoregression models via changes in shock variances,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
- YAMAMOTO, Yohei & 山本, 庸平, 2018. "Identifying Factor-Augmented Vector Autoregression Models via Changes in Shock Variances," Discussion paper series HIAS-E-72, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
- Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Antoine Djogbenou & Sílvia Gonçalves & Benoit Perron, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 481-502, May.
- Michael W. McCracken & Serena Ng, 2021.
"FRED-QD: A Quarterly Database for Macroeconomic Research,"
Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
- Michael McCracken & Serena Ng, 2020. "FRED-QD: A Quarterly Database for Macroeconomic Research," NBER Working Papers 26872, National Bureau of Economic Research, Inc.
- Michael W. McCracken & Serena Ng, 2020. "FRED-QD: A Quarterly Database for Macroeconomic Research," Working Papers 2020-005, Federal Reserve Bank of St. Louis.
- Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
- Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024.
"Confidence intervals of treatment effects in panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 240(1).
- Xingyu Li & Yan Shen & Qiankun Zhou, 2022. "Confidence Intervals of Treatment Effects in Panel Data Models with Interactive Fixed Effects," Papers 2202.12078, arXiv.org.
- Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
- Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Antoine A. Djogbenou, 2020.
"Comovements in the real activity of developed and emerging economies: A test of global versus specific international factors,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 344-370, April.
- Antoine A. Djogbenou, 2018. "Comovements In The Real Activity Of Developed And Emerging Economies: A Test Of Global Versus Specific International Factors," Working Paper 1392, Economics Department, Queen's University.
- Gonçalves, Sílvia & Perron, Benoit, 2020.
"Bootstrapping factor models with cross sectional dependence,"
Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
- Sílvia GONÇALVES & Benoit PERRON, 2018. "Bootstrapping Factor Models With Cross Sectional Dependence," Cahiers de recherche 10-2018, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- GONÇALVES, Sílvia & PERRON, Benoit, 2018. "Bootstrapping factor models with cross sectional dependence," Cahiers de recherche 2018-07, Universite de Montreal, Departement de sciences economiques.
- repec:cte:wsrepe:23974 is not listed on IDEAS
- Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
- Antoine A. Djogbenou, 2021.
"Model selection in factor-augmented regressions with estimated factors,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 470-503, April.
- Antoine A. Djogbenou, 2017. "Model Selection In Factor-augmented Regressions With Estimated Factors," Working Paper 1391, Economics Department, Queen's University.
- Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024.
"Confidence intervals of treatment effects in panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 240(1).
- Xingyu Li & Yan Shen & Qiankun Zhou, 2022. "Confidence Intervals of Treatment Effects in Panel Data Models with Interactive Fixed Effects," Papers 2202.12078, arXiv.org.
- Fosten, Jack, 2017. "Confidence intervals in regressions with estimated factors and idiosyncratic components," Economics Letters, Elsevier, vol. 157(C), pages 71-74.
- Jushan Bai & Kunpeng Li & Lina Lu, 2016.
"Estimation and Inference of FAVAR Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
- Bai, Jushan & Li, Kunpeng & Lu, Lina, 2014. "Estimation and inference of FAVAR models," MPRA Paper 60960, University Library of Munich, Germany.
- Yohei Yamamoto & Naoko Hara, 2022.
"Identifying factor‐augmented vector autoregression models via changes in shock variances,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
- YAMAMOTO, Yohei & 山本, 庸平, 2018. "Identifying Factor-Augmented Vector Autoregression Models via Changes in Shock Variances," Discussion paper series HIAS-E-72, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Gonçalves, Sílvia & Perron, Benoit, 2014.
"Bootstrapping factor-augmented regression models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
- Silvia Gonçalves & Benoit Perron, 2012. "Bootstrapping factor-augmented regression models," CIRANO Working Papers 2012s-12, CIRANO.
- González-Rivera, Gloria & Maldonado, Javier & Ruiz, Esther, 2019.
"Growth in stress,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 948-966.
- González-Rivera, Gloria, 2018. "Growth in Stress," DES - Working Papers. Statistics and Econometrics. WS 26623, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Gloria Gonzalez-Rivera & Esther Ruiz & Javier Vicente, 2018. "Growth in Stress," Working Papers 201805, University of California at Riverside, Department of Economics.
- Luke Hartigan & James Morley, 2020.
"A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting,"
The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
- Hartigan, Luke & Morley, James, 2019. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," Working Papers 2019-10, University of Sydney, School of Economics, revised Nov 2019.
- Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
- Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
- Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017.
"Tests of equal accuracy for nested models with estimated factors,"
Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
- Silvia Goncalves & Michael W. McCracken & Benoit Perron, 2015. "Tests of Equal Accuracy for Nested Models with Estimated Factors," Working Papers 2015-25, Federal Reserve Bank of St. Louis.
- Sium Bodha Hannadige & Jiti Gao & Mervyn J Silvapulle & Param Silvapulle, 2021.
"Time Series Forecasting Using a Mixture of Stationary and Nonstationary Predictors,"
Monash Econometrics and Business Statistics Working Papers
6/21, Monash University, Department of Econometrics and Business Statistics.
- Bodha Hannadige, Sium & Gao, Jiti & Silvapulle, Mervyn & Silvapulle, Param, 2021. "Time Series Forecasting using a Mixture of Stationary and Nonstationary Predictors," MPRA Paper 108669, University Library of Munich, Germany, revised 30 Apr 2021.
- Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Joongyeub Yeo & George Papanicolaou, 2016. "Random matrix approach to estimation of high-dimensional factor models," Papers 1611.05571, arXiv.org, revised Nov 2017.
- Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
More about this item
Keywords
factor model; bootstrap; forecast; conditional mean;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-04-16 (Econometrics)
- NEP-FOR-2016-04-16 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2016s-19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.