IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.05984.html
   My bibliography  Save this paper

scpi: Uncertainty Quantification for Synthetic Control Methods

Author

Listed:
  • Matias D. Cattaneo
  • Yingjie Feng
  • Filippo Palomba
  • Rocio Titiunik

Abstract

The synthetic control method offers a way to quantify the effect of an intervention using weighted averages of untreated units to approximate the counterfactual outcome that the treated unit(s) would have experienced in the absence of the intervention. This method is useful for program evaluation and causal inference in observational studies. We introduce the software package scpi for prediction and inference using synthetic controls, implemented in Python, R, and Stata. For point estimation or prediction of treatment effects, the package offers an array of (possibly penalized) approaches leveraging the latest optimization methods. For uncertainty quantification, the package offers the prediction interval methods introduced by Cattaneo, Feng and Titiunik (2021) and Cattaneo, Feng, Palomba and Titiunik (2022). The paper includes numerical illustrations and a comparison with other synthetic control software.

Suggested Citation

  • Matias D. Cattaneo & Yingjie Feng & Filippo Palomba & Rocio Titiunik, 2022. "scpi: Uncertainty Quantification for Synthetic Control Methods," Papers 2202.05984, arXiv.org, revised Oct 2022.
  • Handle: RePEc:arx:papers:2202.05984
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.05984
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azeem M. Shaikh & Panos Toulis, 2021. "Randomization Tests in Observational Studies With Staggered Adoption of Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1835-1848, October.
    2. Ricardo Masini & Marcelo C. Medeiros, 2021. "Counterfactual Analysis With Artificial Controls: Inference, High Dimensions, and Nonstationarity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1773-1788, October.
    3. Kathleen T. Li, 2020. "Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2068-2083, December.
    4. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
    5. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    6. Matias D. Cattaneo & Yingjie Feng & Rocio Titiunik, 2021. "Prediction Intervals for Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1865-1880, October.
    7. Michael W. Robbins & Jessica Saunders & Beau Kilmer, 2017. "A Framework for Synthetic Control Methods With High-Dimensional, Micro-Level Data: Evaluating a Neighborhood-Specific Crime Intervention," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 109-126, January.
    8. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    9. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    10. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    11. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    12. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    13. Alberto Abadie & Jérémy L’Hour, 2021. "A Penalized Synthetic Control Estimator for Disaggregated Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1817-1834, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.
    2. Carrillo-Maldonado, Paul & Arias, Karla & Zanoni, Wladimir & Cruz, Zoe, 2024. "Local socioeconomic impacts of large-scale mining projects in Ecuador: The case of Fruta del Norte," Resources Policy, Elsevier, vol. 89(C).
    3. Matias D. Cattaneo & Yingjie Feng & Filippo Palomba & Rocio Titiunik, 2022. "Uncertainty Quantification in Synthetic Controls with Staggered Treatment Adoption," Papers 2210.05026, arXiv.org, revised Oct 2024.
    4. Ursula Muench & Armin Nassehi & Joe Kaeser & Knut Bergmann & Matthias Diermeier & Florian Dorn & David Gstrein & Florian Neumeier & Manuel Funke & Moritz Schularick & Christoph Trebesch & Kerim Peren , 2024. "Wohlstand in Gefahr? Ursachen und Folgen von Populismus," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 77(03), pages 03-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Rong J. B. Zhu, 2023. "Synthetic Regressing Control Method," Papers 2306.02584, arXiv.org, revised Oct 2023.
    3. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    4. Zongwu Cai & Ying Fang & Ming Lin & Zixuan Wu, 2023. "A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202305, University of Kansas, Department of Economics, revised Aug 2023.
    5. Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209, arXiv.org, revised Mar 2024.
    6. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    7. Nuno Garoupa & Rok Spruk, 2024. "Populist Constitutional Backsliding and Judicial Independence: Evidence from Turkiye," Papers 2410.02439, arXiv.org.
    8. Masahiro Kato & Akari Ohda & Masaaki Imaizumi, 2023. "Asymptotically Unbiased Synthetic Control Methods by Distribution Matching," Papers 2307.11127, arXiv.org, revised May 2024.
    9. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    10. Stefano, Roberta di & Mellace, Giovanni, 2020. "The inclusive synthetic control method," Discussion Papers on Economics 14/2020, University of Southern Denmark, Department of Economics.
    11. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    12. Ignacio Martinez & Jaume Vives-i-Bastida, 2022. "Bayesian and Frequentist Inference for Synthetic Controls," Papers 2206.01779, arXiv.org, revised Jul 2024.
    13. repec:ags:aaea22:335971 is not listed on IDEAS
    14. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.
    15. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    16. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: Causal Effects of Fuel Taxation and Mediating Mechanisms for Reducing Climate and Pollution Costs," CESifo Working Paper Series 10508, CESifo.
    17. Dmitry Arkhangelsky & Aleksei Samkov, 2024. "Sequential Synthetic Difference in Differences," Papers 2404.00164, arXiv.org.
    18. Tomasz Serwach, 2022. "The European Union and within-country income inequalities. The case of the New Member States," Working Papers hal-03548416, HAL.
    19. Roy Cerqueti & Raffaella Coppier & Alessandro Girardi & Marco Ventura, 2022. "The sooner the better: lives saved by the lockdown during the COVID-19 outbreak. The case of Italy," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 46-70.
    20. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: How Tax Salience and Fuel Substitution Mediate Climate and Health Benefits," Discussion Papers of DIW Berlin 2041, DIW Berlin, German Institute for Economic Research.
    21. Claudia Shi & Dhanya Sridhar & Vishal Misra & David M. Blei, 2021. "On the Assumptions of Synthetic Control Methods," Papers 2112.05671, arXiv.org, revised Dec 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.05984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.