IDEAS home Printed from https://ideas.repec.org/p/ajt/wcinch/78746.html
   My bibliography  Save this paper

Technology, Skills, and Performance: The Case of Robots in Surgery

Author

Listed:
  • Tafti, Elena Ashtari

Abstract

This paper investigates the potential of new technologies to reduce disparities in the provision of healthcare services. Differences in providers’ skills may cause variation in patient outcomes. The adoption of innovations, like robots, can attenuate this problem if technological gains are decreasing in users’ skills or may exacerbate existing variation in performance otherwise. I show that, in England, the diffusion of surgical robots coincided with an improvement in average surgical performance and a convergence in outcomes between high and lower-skilled surgeons for prostate cancer patients. I study whether this pattern can be attributed to the adoption of robots using the universe of inpatient admissions to the National Health Service (NHS). To identify the effects of robotic surgery on patient outcomes, I exploit quasi-random variation in the geographic allocation of robots, allowing for selection and heterogeneity in treatment effects. I find that robots shorten patients’ length of stay in hospital and decrease the incidence of adverse events from surgery, but their effects significantly depend on surgeons’ skills. The robot has little impact on the performance of highly skilled surgeons, while lower skilled surgeons gain the most from it. I also uncover a strong pattern of negative selection on both observable and unobservable characteristics. Although the attainable gains are higher for lower-skilled surgeons, they use the robot the least. My results suggest that the potential benefit of a new technology largely depends on how it combines with the skills of the individual users.

Suggested Citation

  • Tafti, Elena Ashtari, 2023. "Technology, Skills, and Performance: The Case of Robots in Surgery," CINCH Working Paper Series (since 2020) 78746, Duisburg-Essen University Library, DuEPublico.
  • Handle: RePEc:ajt:wcinch:78746
    DOI: 10.17185/duepublico/78746
    as

    Download full text from publisher

    File URL: https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00078283/CINCH_Series_2023_01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17185/duepublico/78746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amitabh Chandra & Douglas O. Staiger, 2007. "Productivity Spillovers in Health Care: Evidence from the Treatment of Heart Attacks," Journal of Political Economy, University of Chicago Press, vol. 115(1), pages 103-140.
    2. Cooper, Zack & Gibbons, Stephen & Jones, Simon & McGuire, Alistair, 2010. "Does hospital competition improve efficiency? An analysis of the recent market-based reforms to the English NHS," LSE Research Online Documents on Economics 28578, London School of Economics and Political Science, LSE Library.
    3. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    4. Maynou, Laia & Pearson, Georgia & McGuire, Alistair & Serra-Sastre, Victoria, 2022. "The diffusion of robotic surgery: examining technology use in the English NHS," LSE Research Online Documents on Economics 114535, London School of Economics and Political Science, LSE Library.
    5. Angus Deaton, 2003. "Health, Inequality, and Economic Development," Journal of Economic Literature, American Economic Association, vol. 41(1), pages 113-158, March.
    6. Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
    7. Maynou, Laia & Pearson, Georgia & McGuire, Alistair & Serra-Sastre, Victoria, 2022. "The diffusion of robotic surgery: Examining technology use in the English NHS," Health Policy, Elsevier, vol. 126(4), pages 325-336.
    8. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    9. David Card & Alessandra Fenizia & David Silver, 2023. "The Health Impacts of Hospital Delivery Practices," American Economic Journal: Economic Policy, American Economic Association, vol. 15(2), pages 42-81, May.
    10. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    11. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    12. Andrew Chesher, 2005. "Nonparametric Identification under Discrete Variation," Econometrica, Econometric Society, vol. 73(5), pages 1525-1550, September.
    13. Magne Mogstad & Alexander Torgovitsky & Christopher R. Walters, 2021. "The Causal Interpretation of Two-Stage Least Squares with Multiple Instrumental Variables," American Economic Review, American Economic Association, vol. 111(11), pages 3663-3698, November.
    14. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    15. Janet Currie & W. Bentley MacLeod, 2017. "Diagnosing Expertise: Human Capital, Decision Making, and Performance among Physicians," Journal of Labor Economics, University of Chicago Press, vol. 35(1), pages 1-43.
    16. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    17. Tavneet Suri, 2011. "Selection and Comparative Advantage in Technology Adoption," Econometrica, Econometric Society, vol. 79(1), pages 159-209, January.
    18. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    19. Jason Abaluck & Leila Agha & Chris Kabrhel & Ali Raja & Arjun Venkatesh, 2016. "The Determinants of Productivity in Medical Testing: Intensity and Allocation of Care," American Economic Review, American Economic Association, vol. 106(12), pages 3730-3764, December.
    20. Amy Finkelstein & Matthew Gentzkow & Heidi Williams, 2016. "Sources of Geographic Variation in Health Care: Evidence From PatientMigration," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1681-1726.
    21. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    22. Martin Eckhoff Andresen, 2018. "Exploring marginal treatment effects: Flexible estimation using Stata," Stata Journal, StataCorp LP, vol. 18(1), pages 118-158, March.
    23. David Molitor, 2018. "The Evolution of Physician Practice Styles: Evidence from Cardiologist Migration," American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 326-356, February.
    24. Horn, Danea & Sacarny, Adam & Zhou, Annetta, 2022. "Technology adoption and market allocation: The case of robotic surgery," Journal of Health Economics, Elsevier, vol. 86(C).
    25. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    26. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    27. Souvik Banerjee & Anirban Basu, 2021. "Estimating Endogenous Treatment Effects Using Latent Factor Models with and without Instrumental Variables," Econometrics, MDPI, vol. 9(1), pages 1-25, March.
    28. Amitabh Chandra & Douglas O Staiger, 2020. "Identifying Sources of Inefficiency in Healthcare [“The Determinants of Productivity in Medical Testing: Intensity and Allocation of Care,”]," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(2), pages 785-843.
    29. David C Chan & Matthew Gentzkow & Chuan Yu, 2022. "Selection with Variation in Diagnostic Skill: Evidence from Radiologists [The Determinants of Productivity in Medical Testing: Intensity and Allocation of Care]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(2), pages 729-783.
    30. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    31. Skinner, Jonathan, 2011. "Causes and Consequences of Regional Variations in Health Care," Handbook of Health Economics, in: Mark V. Pauly & Thomas G. Mcguire & Pedro P. Barros (ed.), Handbook of Health Economics, volume 2, chapter 0, pages 45-93, Elsevier.
    32. McClellan, Mark & Newhouse, Joseph P., 1997. "The marginal cost-effectiveness of medical technology: A panel instrumental-variables approach," Journal of Econometrics, Elsevier, vol. 77(1), pages 39-64, March.
    33. Xiang Zhou & Yu Xie, 2019. "Marginal Treatment Effects from a Propensity Score Perspective," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 3070-3084.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Ashtari Tafti, 2022. "Technology, skills, and performance: the case of robots in surgery," IFS Working Papers W22/46, Institute for Fiscal Studies.
    2. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    3. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    4. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    5. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    6. Akabayashi, Hideo & Ruberg, Tim & Shikishima, Chizuru & Yamashita, Jun, 2023. "Education-oriented and care-oriented preschools: Implications on child development," Labour Economics, Elsevier, vol. 84(C).
    7. Laura Schmitz, 2022. "Heterogeneous Effects of After-School Care on Child Development," Discussion Papers of DIW Berlin 2006, DIW Berlin, German Institute for Economic Research.
    8. Felfe, Christina & Lalive, Rafael, 2018. "Does early child care affect children's development?," Journal of Public Economics, Elsevier, vol. 159(C), pages 33-53.
    9. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    10. Matthias Westphal & Daniel A Kamhöfer & Hendrik Schmitz, 2022. "Marginal College Wage Premiums Under Selection Into Employment," The Economic Journal, Royal Economic Society, vol. 132(646), pages 2231-2272.
    11. Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).
    12. Péron, M.; & Dormont, B.;, 2018. "Heterogeneous moral hazard in Supplementary Health Insurance," Health, Econometrics and Data Group (HEDG) Working Papers 18/27, HEDG, c/o Department of Economics, University of York.
    13. Giesecke, Matthias & Schuß, Eric, 2019. "Heterogeneity in marginal returns to language training of immigrants," IAB-Discussion Paper 201919, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    14. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    15. Olivier De Groote & Koen Declercq, 2021. "Tracking and specialization of high schools: Heterogeneous effects of school choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 898-916, November.
    16. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    17. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    18. Elisa Gerten & Michael Beckmann & Elisa Gerten & Matthias Kräkel, 2022. "Information and Communication Technology, Hierarchy, and Job Design," ECONtribute Discussion Papers Series 189, University of Bonn and University of Cologne, Germany.
    19. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    20. Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.

    More about this item

    Keywords

    Health innovation; Surgical robots; Surgical performance; Skill heterogeneity;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajt:wcinch:78746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DuEPublico (email available below). General contact details of provider: https://edirc.repec.org/data/cinchde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.