IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v238y2024i2s0304407623002774.html
   My bibliography  Save this article

Sharp bounds in the latent index selection model

Author

Listed:
  • Marx, Philip

Abstract

A fundamental question underlying the literature on partial identification is: what can we learn about parameters that are relevant for policy but not necessarily point-identified by the exogenous variation we observe? This paper provides an answer in terms of sharp, analytic characterizations and bounds for an important class of policy-relevant treatment effects, consisting of marginal treatment effects and linear functionals thereof, in the latent index selection model as formalized in Vytlacil (2002). The sharp bounds use the full content of identified marginal distributions, and analytic derivations rely on the theory of stochastic orders. The proposed methods also make it possible to sharply incorporate new auxiliary assumptions on distributions into the latent index selection framework. Empirically, I apply the methods to study the effects of Medicaid on emergency room utilization in the Oregon Health Insurance Experiment, showing that the predictions from extrapolations based on a distribution assumption (rank similarity) differ substantively and consistently from existing extrapolations based on a parametric mean assumption (linearity). This underscores the value of utilizing the model’s full empirical content in combination with auxiliary assumptions.

Suggested Citation

  • Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).
  • Handle: RePEc:eee:econom:v:238:y:2024:i:2:s0304407623002774
    DOI: 10.1016/j.jeconom.2023.105561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623002774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.105561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    3. Alfred Galichon, 2016. "Optimal Transport Methods in Economics," Economics Books, Princeton University Press, edition 1, number 10870.
    4. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    5. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    6. Ian Jewitt, 1989. "Choosing Between Risky Prospects: The Characterization of Comparative Statics Results, and Location Independent Risk," Management Science, INFORMS, vol. 35(1), pages 60-70, January.
    7. Liran Einav & Amy Finkelstein & Stephen P. Ryan & Paul Schrimpf & Mark R. Cullen, 2013. "Selection on Moral Hazard in Health Insurance," American Economic Review, American Economic Association, vol. 103(1), pages 178-219, February.
    8. Brigham R. Frandsen & Lars J. Lefgren, 2018. "Testing Rank Similarity," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 86-91, March.
    9. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    10. Amanda Kowalski, 2016. "Doing more when you're running LATE: Applying marginal treatment effect methods to examine treatment effect heterogeneity in experiments," Artefactual Field Experiments 00560, The Field Experiments Website.
    11. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    12. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    13. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    14. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    15. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    16. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    17. Kolstad, Jonathan T. & Kowalski, Amanda E., 2012. "The impact of health care reform on hospital and preventive care: Evidence from Massachusetts," Journal of Public Economics, Elsevier, vol. 96(11), pages 909-929.
    18. Amanda E. Kowalski, 2016. "Doing More When You're Running LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Experiments for the Young and Privately Insured"," Cowles Foundation Discussion Papers 2045, Cowles Foundation for Research in Economics, Yale University.
    19. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    20. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    21. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    22. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    23. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    24. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    25. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    26. Miller, Sarah, 2012. "The effect of insurance on emergency room visits: An analysis of the 2006 Massachusetts health reform," Journal of Public Economics, Elsevier, vol. 96(11), pages 893-908.
    27. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    28. Machina, Mark J & Pratt, John W, 1997. "Increasing Risk: Some Direct Constructions," Journal of Risk and Uncertainty, Springer, vol. 14(2), pages 103-127, March.
    29. Yingying Dong & Shu Shen, 2018. "Testing for Rank Invariance or Similarity in Program Evaluation," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 78-85, March.
    30. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    31. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    32. Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(3), pages 931-951, June.
    33. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    34. Quang Vuong & Haiqing Xu, 2017. "Counterfactual mapping and individual treatment effects in nonseparable models with binary endogeneity," Quantitative Economics, Econometric Society, vol. 8(2), pages 589-610, July.
    35. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    36. Martin Huber & Lukas Laffers & Giovanni Mellace, 2017. "Sharp IV Bounds on Average Treatment Effects on the Treated and Other Populations Under Endogeneity and Noncompliance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 56-79, January.
    37. Toru Kitagawa, 2009. "Identification region of the potential outcome distributions under instrument independence," CeMMAP working papers CWP30/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    2. Philip Marx, 2020. "Sharp Bounds in the Latent Index Selection Model," Papers 2012.02390, arXiv.org, revised Apr 2023.
    3. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    4. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    5. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    6. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    7. Amanda E Kowalski, 2023. "Behaviour within a Clinical Trial and Implications for Mammography Guidelines," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(1), pages 432-462.
    8. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    11. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    12. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    13. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    14. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    15. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    17. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    18. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    19. Michael R.M. Abrigo & Timothy J. Halliday & Teresa Molina, 2022. "Expanding health insurance for the elderly of the Philippines," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 500-520, April.
    20. Tafti, Elena Ashtari, 2023. "Technology, Skills, and Performance: The Case of Robots in Surgery," CINCH Working Paper Series (since 2020) 78746, Duisburg-Essen University Library, DuEPublico.

    More about this item

    Keywords

    Instrumental variables; Latent index selection model; Marginal treatment effects; Partial identification; Sharp bounds; Counterfactuals; Extrapolation; Second-order stochastic dominance; Stochastic ordering; Majorization; Oregon Health Insurance Experiment;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:238:y:2024:i:2:s0304407623002774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.