IDEAS home Printed from https://ideas.repec.org/f/psi906.html
   My authors  Follow this author

Caston Sigauke

Personal Details

First Name:Caston
Middle Name:
Last Name:Sigauke
Suffix:
RePEc Short-ID:psi906
https://caston-sigauke.owlstown.net/
Department of Mathematical and Computational Sciences

Affiliation

University of Venda, Department of Statistics (Caston Sigauke)

https://www.univen.ac.za/about/schools/school-of-mathematical-and-natural-sciences/statistics/
South Africa, Thohoyandou

Research output

as
Jump to: Articles

Articles

  1. Daniel Maposa & Anna M. Seimela & Caston Sigauke & James J. Cochran, 2021. "Modelling temperature extremes in the Limpopo province: bivariate time-varying threshold excess approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2227-2246, July.
  2. Fhumulani Mathivha & Caston Sigauke & Hector Chikoore & John Odiyo, 2020. "Short-Term and Medium-Term Drought Forecasting Using Generalized Additive Models," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
  3. Phathutshedzo Mpfumali & Caston Sigauke & Alphonce Bere & Sophie Mulaudzi, 2019. "Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data," Energies, MDPI, vol. 12(18), pages 1-28, September.
  4. Lebotsa, Moshoko Emily & Sigauke, Caston & Bere, Alphonce & Fildes, Robert & Boylan, John E., 2018. "Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem," Applied Energy, Elsevier, vol. 222(C), pages 104-118.
  5. Caston Sigauke & Murendeni Maurel Nemukula & Daniel Maposa, 2018. "Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models," Energies, MDPI, vol. 11(9), pages 1-21, August.
  6. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
  7. Sigauke, Caston & Verster, Andréhette & Chikobvu, Delson, 2013. "Extreme daily increases in peak electricity demand: Tail-quantile estimation," Energy Policy, Elsevier, vol. 53(C), pages 90-96.
  8. Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Daniel Maposa & Anna M. Seimela & Caston Sigauke & James J. Cochran, 2021. "Modelling temperature extremes in the Limpopo province: bivariate time-varying threshold excess approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2227-2246, July.

    Cited by:

    1. Caston Sigauke & Thakhani Ravele & Lordwell Jhamba, 2022. "Extremal Dependence Modelling of Global Horizontal Irradiance with Temperature and Humidity: An Application Using South African Data," Energies, MDPI, vol. 15(16), pages 1-25, August.

  2. Phathutshedzo Mpfumali & Caston Sigauke & Alphonce Bere & Sophie Mulaudzi, 2019. "Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data," Energies, MDPI, vol. 12(18), pages 1-28, September.

    Cited by:

    1. Jozef Barunik & Lubos Hanus, 2023. "Learning Probability Distributions of Day-Ahead Electricity Prices," Papers 2310.02867, arXiv.org, revised Oct 2023.
    2. Bartosz Uniejewski, 2023. "Electricity price forecasting with Smoothing Quantile Regression Averaging: Quantifying economic benefits of probabilistic forecasts," Papers 2302.00411, arXiv.org, revised Jan 2024.
    3. Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
    4. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    5. Giorgio Guariso & Giuseppe Nunnari & Matteo Sangiorgio, 2020. "Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks," Energies, MDPI, vol. 13(15), pages 1-18, August.
    6. Nosipho Zwane & Henerica Tazvinga & Christina Botai & Miriam Murambadoro & Joel Botai & Jaco de Wit & Brighton Mabasa & Siphamandla Daniel & Tafadzwanashe Mabhaudhi, 2022. "A Bibliometric Analysis of Solar Energy Forecasting Studies in Africa," Energies, MDPI, vol. 15(15), pages 1-23, July.
    7. Manoel Henriques de Sá Campos & Chigueru Tiba, 2020. "Global Horizontal Irradiance Modeling for All Sky Conditions Using an Image-Pixel Approach," Energies, MDPI, vol. 13(24), pages 1-15, December.

  3. Lebotsa, Moshoko Emily & Sigauke, Caston & Bere, Alphonce & Fildes, Robert & Boylan, John E., 2018. "Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem," Applied Energy, Elsevier, vol. 222(C), pages 104-118.

    Cited by:

    1. Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
    2. Hu, Jianming & Tang, Jingwei & Lin, Yingying, 2020. "A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization," Renewable Energy, Elsevier, vol. 149(C), pages 141-164.
    3. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
    4. Wang, Xuewei & Wang, Jing & Wang, Lin & Yuan, Ruiming, 2019. "Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
    6. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    7. AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Adamowski, Jan F. & Li, Yan, 2019. "Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    9. Clark, Daniel R. & Crawford, G. Christopher & Pidduck, Robert J., 2023. "Exceptionality in entrepreneurship: Systematically investigating outlier outcomes," Journal of Business Venturing Insights, Elsevier, vol. 20(C).
    10. Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
    11. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    12. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    13. Do, Linh Phuong Catherine & Lyócsa, Štefan & Molnár, Peter, 2021. "Residual electricity demand: An empirical investigation," Applied Energy, Elsevier, vol. 283(C).
    14. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    15. Wang, Xuewei & Wang, Jing & Yuan, Ruiming & Jiang, Zhenyu, 2019. "Dynamic error testing method of electricity meters by a pseudo random distorted test signal," Applied Energy, Elsevier, vol. 249(C), pages 67-78.
    16. Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    17. Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
    18. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    19. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    20. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    21. Abdullah-Al-Nahid, Syed & Jamal, Taskin & Aziz, Tareq & Bhuiyan, Ashraf Hossain & Khan, Tafsir Ahmed, 2023. "Additive linear modelling and genetic algorithm based electric vehicle outlook and policy formulation for decarbonizing the future transport sector of Bangladesh," Transport Policy, Elsevier, vol. 136(C), pages 21-46.
    22. Mengchen Zhao & Santiago Gomez-Rosero & Hooman Nouraei & Craig Zych & Miriam A. M. Capretz & Ayan Sadhu, 2024. "Toward Prediction of Energy Consumption Peaks and Timestamping in Commercial Supermarkets Using Deep Learning," Energies, MDPI, vol. 17(7), pages 1-24, April.
    23. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    24. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    25. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    26. Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Fernando Rueda-Martinez & Gerardo Alcalá & Alberto-Jesus Perea-Moreno, 2019. "Wind Power Cogeneration to Reduce Peak Electricity Demand in Mexican States Along the Gulf of Mexico," Energies, MDPI, vol. 12(12), pages 1-22, June.
    27. Zhang, Shu & Wang, Yi & Zhang, Yutian & Wang, Dan & Zhang, Ning, 2020. "Load probability density forecasting by transforming and combining quantile forecasts," Applied Energy, Elsevier, vol. 277(C).

  4. Caston Sigauke & Murendeni Maurel Nemukula & Daniel Maposa, 2018. "Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models," Energies, MDPI, vol. 11(9), pages 1-21, August.

    Cited by:

    1. Jônatas Belotti & Hugo Siqueira & Lilian Araujo & Sérgio L. Stevan & Paulo S.G. de Mattos Neto & Manoel H. N. Marinho & João Fausto L. de Oliveira & Fábio Usberti & Marcos de Almeida Leone Filho & Att, 2020. "Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric Plants," Energies, MDPI, vol. 13(18), pages 1-22, September.
    2. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    3. Tomasz Serafin & Bartosz Uniejewski & Rafal Weron, 2019. "Averaging predictive distributions across calibration windows for day-ahead electricity price forecasting," WORking papers in Management Science (WORMS) WORMS/19/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, revised 06 Jul 2019.
    4. Fhumulani Mathivha & Caston Sigauke & Hector Chikoore & John Odiyo, 2020. "Short-Term and Medium-Term Drought Forecasting Using Generalized Additive Models," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    5. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    6. Hugo Siqueira & Mariana Macedo & Yara de Souza Tadano & Thiago Antonini Alves & Sergio L. Stevan & Domingos S. Oliveira & Manoel H.N. Marinho & Paulo S.G. de Mattos Neto & João F. L. de Oliveira & Ive, 2020. "Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods," Energies, MDPI, vol. 13(16), pages 1-35, August.
    7. Kamal Chapagain & Somsak Kittipiyakul & Pisut Kulthanavit, 2020. "Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand," Energies, MDPI, vol. 13(10), pages 1-29, May.

  5. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.

    Cited by:

    1. Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
    2. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    3. Daniel Maposa & Anna M. Seimela & Caston Sigauke & James J. Cochran, 2021. "Modelling temperature extremes in the Limpopo province: bivariate time-varying threshold excess approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2227-2246, July.

  6. Sigauke, Caston & Verster, Andréhette & Chikobvu, Delson, 2013. "Extreme daily increases in peak electricity demand: Tail-quantile estimation," Energy Policy, Elsevier, vol. 53(C), pages 90-96.

    Cited by:

    1. Katleho Makatjane, 2022. "Forecasting Uncertainty Intervals for Return Period of Extreme Daily Electricity Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 217-225, July.
    2. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
    3. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    4. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    5. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    6. Nijhuis, M. & Gibescu, M. & Cobben, J.F.G., 2017. "Analysis of reflectivity & predictability of electricity network tariff structures for household consumers," Energy Policy, Elsevier, vol. 109(C), pages 631-641.
    7. Stephen Chan & Saralees Nadarajah, 2015. "Extreme value analysis of electricity demand in the UK," Applied Economics Letters, Taylor & Francis Journals, vol. 22(15), pages 1246-1251, October.

  7. Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.

    Cited by:

    1. Lisi, Francesco & Pelagatti, Matteo M., 2018. "Component estimation for electricity market data: Deterministic or stochastic?," Energy Economics, Elsevier, vol. 74(C), pages 13-37.
    2. Amara-Ouali, Yvenn & Fasiolo, Matteo & Goude, Yannig & Yan, Hui, 2023. "Daily peak electrical load forecasting with a multi-resolution approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1272-1286.
    3. Ismail Shah & Hasnain Iftikhar & Sajid Ali & Depeng Wang, 2019. "Short-Term Electricity Demand Forecasting Using Components Estimation Technique," Energies, MDPI, vol. 12(13), pages 1-17, July.
    4. Alexios Lekidis & Elpiniki I. Papageorgiou, 2023. "Edge-Based Short-Term Energy Demand Prediction," Energies, MDPI, vol. 16(14), pages 1-20, July.
    5. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    6. Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
    7. Weijie Zhou & Huihui Tao & Jiaxin Chang & Huimin Jiang & Li Chen, 2023. "Forecasting Chinese Electricity Consumption Based on Grey Seasonal Model with New Information Priority," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    8. Weijie Zhou & Huihui Tao & Huimin Jiang, 2022. "Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    9. Li, Z. & Hurn, A.S. & Clements, A.E., 2017. "Forecasting quantiles of day-ahead electricity load," Energy Economics, Elsevier, vol. 67(C), pages 60-71.
    10. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    11. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    12. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    13. Heung-gu Son & Yunsun Kim & Sahm Kim, 2020. "Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid," Energies, MDPI, vol. 13(9), pages 1-14, May.
    14. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    15. Yunsun Kim & Sahm Kim, 2021. "Electricity Load and Internet Traffic Forecasting Using Vector Autoregressive Models," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    16. Hamad M. Alhajeri & Abdulrahman Almutairi & Abdulrahman Alenezi & Faisal Alshammari, 2020. "Energy Demand in the State of Kuwait During the Covid-19 Pandemic: Technical, Economic, and Environmental Perspectives," Energies, MDPI, vol. 13(17), pages 1-16, August.
    17. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    18. Heydari, Azim & Astiaso Garcia, Davide & Keynia, Farshid & Bisegna, Fabio & De Santoli, Livio, 2019. "A novel composite neural network based method for wind and solar power forecasting in microgrids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Minglu Ma & Zhuangzhuang Wang, 2019. "Prediction of the Energy Consumption Variation Trend in South Africa based on ARIMA, NGM and NGM-ARIMA Models," Energies, MDPI, vol. 13(1), pages 1-15, December.
    20. Wang, Deyun & Yue, Chenqiang & ElAmraoui, Adnen, 2021. "Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    21. Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Caston Sigauke should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.