IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipas0306261921012952.html
   My bibliography  Save this article

An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting

Author

Listed:
  • Yang, Dongchuan
  • Guo, Ju-e
  • Sun, Shaolong
  • Han, Jing
  • Wang, Shouyang

Abstract

Short-term load forecasting is crucial for power demand-side management and the planning of the power system. Considering the necessity of interval-valued time series modeling and forecasting for the power system, this study proposes an interval decomposition-reconstruction-ensemble learning approach to forecast interval-valued load, in terms of the concept of “divide and conquer”. First, bivariate empirical mode decomposition is applied to decompose the original interval-valued data into a finite number of bivariate modal components for extracting and identifying the fluctuation characteristics of data. Second, based on the complexity analysis of each bivariate modal component by multivariate multiscale permutation entropy, the components were reconstructed for capturing inner factors and reduce the accumulation of estimation errors. Third, long short-term memory is utilized to synchronously forecast the upper and the lower bounds of each bivariate component and optimized by the Bayesian optimization algorithm. Finally, generating the aggregated interval-valued output by ensemble the forecasting results of the upper and lower bounds of each component severally. The electric load of five states in Australia is used for verification, and the empirical results show that the forecasting accuracy of our proposed learning approach is significantly superior to single models and the decomposition-ensemble models without reconstruction. This indicates that our proposed learning approach appears to be a promising alternative for interval load forecasting.

Suggested Citation

  • Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012952
    DOI: 10.1016/j.apenergy.2021.117992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    2. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
    3. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    4. Lebotsa, Moshoko Emily & Sigauke, Caston & Bere, Alphonce & Fildes, Robert & Boylan, John E., 2018. "Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem," Applied Energy, Elsevier, vol. 222(C), pages 104-118.
    5. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    6. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    7. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    8. Żymełka, Piotr & Szega, Marcin, 2020. "Issues of an improving the accuracy of energy carriers production forecasting in a computer-aided system for monitoring the operation of a gas-fired cogeneration plant," Energy, Elsevier, vol. 209(C).
    9. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    10. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    11. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    12. Li, Yanying & Che, Jinxing & Yang, Youlong, 2018. "Subsampled support vector regression ensemble for short term electric load forecasting," Energy, Elsevier, vol. 164(C), pages 160-170.
    13. Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
    14. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    15. Tang, Ling & Yu, Lean & He, Kaijian, 2014. "A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 128(C), pages 1-14.
    16. Takeda, Hisashi & Tamura, Yoshiyasu & Sato, Seisho, 2016. "Using the ensemble Kalman filter for electricity load forecasting and analysis," Energy, Elsevier, vol. 104(C), pages 184-198.
    17. Dabin Zhang & Qian Li & Amin W. Mugera & Liwen Ling, 2020. "A hybrid model considering cointegration for interval‐valued pork price forecasting in China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1324-1341, December.
    18. Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
    19. Maciejowska, Katarzyna & Nowotarski, Jakub, 2016. "A hybrid model for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1051-1056.
    20. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    21. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    22. De Felice, Matteo & Alessandri, Andrea & Catalano, Franco, 2015. "Seasonal climate forecasts for medium-term electricity demand forecasting," Applied Energy, Elsevier, vol. 137(C), pages 435-444.
    23. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    24. Saxena, Harshit & Aponte, Omar & McConky, Katie T., 2019. "A hybrid machine learning model for forecasting a billing period’s peak electric load days," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1288-1303.
    25. Ling Tang & Shuai Wang & Kaijian He & Shouyang Wang, 2015. "A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting," Annals of Operations Research, Springer, vol. 234(1), pages 111-132, November.
    26. Xiaoyu Zhang & Rui Wang & Tao Zhang & Yajie Liu & Yabing Zha, 2018. "Short-Term Load Forecasting Using a Novel Deep Learning Framework," Energies, MDPI, vol. 11(6), pages 1-15, June.
    27. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    28. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    29. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    2. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
    3. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    4. Lv, Zhihan & Wang, Nana & Lou, Ranran & Tian, Yajun & Guizani, Mohsen, 2023. "Towards carbon Neutrality: Prediction of wave energy based on improved GRU in Maritime transportation," Applied Energy, Elsevier, vol. 331(C).
    5. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    6. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    7. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    8. Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
    9. Jingming Su & Xuguang Han & Yan Hong, 2023. "Short Term Power Load Forecasting Based on PSVMD-CGA Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    10. Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
    11. Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
    12. Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
    13. Morais, Lucas Barros Scianni & Aquila, Giancarlo & de Faria, Victor Augusto Durães & Lima, Luana Medeiros Marangon & Lima, José Wanderley Marangon & de Queiroz, Anderson Rodrigo, 2023. "Short-term load forecasting using neural networks and global climate models: An application to a large-scale electrical power system," Applied Energy, Elsevier, vol. 348(C).
    14. Ruixiang Zhang & Ziyu Zhu & Meng Yuan & Yihan Guo & Jie Song & Xuanxuan Shi & Yu Wang & Yaojie Sun, 2023. "Regional Residential Short-Term Load-Interval Forecasting Based on SSA-LSTM and Load Consumption Consistency Analysis," Energies, MDPI, vol. 16(24), pages 1-17, December.
    15. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
    16. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    2. Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
    3. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    4. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    5. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    6. Fan, Guo-Feng & Yu, Meng & Dong, Song-Qiao & Yeh, Yi-Hsuan & Hong, Wei-Chiang, 2021. "Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling," Utilities Policy, Elsevier, vol. 73(C).
    7. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    8. Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
    9. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    10. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    11. Tavassoli-Hojati, Z. & Ghaderi, S.F. & Iranmanesh, H. & Hilber, P. & Shayesteh, E., 2020. "A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids," Energy, Elsevier, vol. 199(C).
    12. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    13. Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
    14. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    15. Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).
    16. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
    18. Liu, Jiefeng & Zhang, Zhenhao & Fan, Xianhao & Zhang, Yiyi & Wang, Jiaqi & Zhou, Ke & Liang, Shuo & Yu, Xiaoyong & Zhang, Wei, 2022. "Power system load forecasting using mobility optimization and multi-task learning in COVID-19," Applied Energy, Elsevier, vol. 310(C).
    19. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    20. Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.