IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021810.html
   My bibliography  Save this article

A novel short-term multi-energy load forecasting method for integrated energy system based on two-layer joint modal decomposition and dynamic optimal ensemble learning

Author

Listed:
  • Lin, Zhengyang
  • Lin, Tao
  • Li, Jun
  • Li, Chen

Abstract

Accurate short-term multi-energy load forecasting is the cornerstone for optimal dispatch and stable operation of integrated energy system (IES). However, due to the complexity and coupling inside IES, multi-energy load forecasting faces serious challenges with data nonlinearity and instability, leading to reduced prediction accuracy. To this end, a novel short-term multi-energy load forecasting method for IES based on two-layer joint modal decomposition (TLJMD) and dynamic optimal ensemble (DOE) learning is developed in this paper. Firstly, the TLJMD method is proposed to decompose the nonlinear and nonstationary multi-energy load into several intrinsic mode functions (IMFs) to capture the periodicity and regularity within the multi-energy load. Secondly, the uniform information coefficient method is employed to select calendar, meteorological, and coupling feature that exhibit strong correlation with the multi-energy load. Eventually, the DOE model consisting of four base learners and the ensemble weight forecasting model is constructed, the IMFs and selected features are input into the DOE model to achieve the final forecasting results. The proposed method is tested on the publicly available data set from real-world scenario and compared with various forecasting methods to assess its effectiveness and accuracy. The simulation results indicate that the proposed method outperforms other forecasting methods in short-term multi-energy load forecasting for IES, with mean absolute percentage error values of 1.7025 %, 2.2244 %, and 2.3808 % for electric, heating, and cooling load forecasting, respectively.

Suggested Citation

  • Lin, Zhengyang & Lin, Tao & Li, Jun & Li, Chen, 2025. "A novel short-term multi-energy load forecasting method for integrated energy system based on two-layer joint modal decomposition and dynamic optimal ensemble learning," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021810
    DOI: 10.1016/j.apenergy.2024.124798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.