IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021810.html
   My bibliography  Save this article

A novel short-term multi-energy load forecasting method for integrated energy system based on two-layer joint modal decomposition and dynamic optimal ensemble learning

Author

Listed:
  • Lin, Zhengyang
  • Lin, Tao
  • Li, Jun
  • Li, Chen

Abstract

Accurate short-term multi-energy load forecasting is the cornerstone for optimal dispatch and stable operation of integrated energy system (IES). However, due to the complexity and coupling inside IES, multi-energy load forecasting faces serious challenges with data nonlinearity and instability, leading to reduced prediction accuracy. To this end, a novel short-term multi-energy load forecasting method for IES based on two-layer joint modal decomposition (TLJMD) and dynamic optimal ensemble (DOE) learning is developed in this paper. Firstly, the TLJMD method is proposed to decompose the nonlinear and nonstationary multi-energy load into several intrinsic mode functions (IMFs) to capture the periodicity and regularity within the multi-energy load. Secondly, the uniform information coefficient method is employed to select calendar, meteorological, and coupling feature that exhibit strong correlation with the multi-energy load. Eventually, the DOE model consisting of four base learners and the ensemble weight forecasting model is constructed, the IMFs and selected features are input into the DOE model to achieve the final forecasting results. The proposed method is tested on the publicly available data set from real-world scenario and compared with various forecasting methods to assess its effectiveness and accuracy. The simulation results indicate that the proposed method outperforms other forecasting methods in short-term multi-energy load forecasting for IES, with mean absolute percentage error values of 1.7025 %, 2.2244 %, and 2.3808 % for electric, heating, and cooling load forecasting, respectively.

Suggested Citation

  • Lin, Zhengyang & Lin, Tao & Li, Jun & Li, Chen, 2025. "A novel short-term multi-energy load forecasting method for integrated energy system based on two-layer joint modal decomposition and dynamic optimal ensemble learning," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021810
    DOI: 10.1016/j.apenergy.2024.124798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
    2. Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).
    3. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    4. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
    5. Yu, Min & Niu, Dongxiao & Zhao, Jinqiu & Li, Mingyu & Sun, Lijie & Yu, Xiaoyu, 2023. "Building cooling load forecasting of IES considering spatiotemporal coupling based on hybrid deep learning model," Applied Energy, Elsevier, vol. 349(C).
    6. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    7. Wang, Shaomin & Wang, Shouxiang & Chen, Haiwen & Gu, Qiang, 2020. "Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics," Energy, Elsevier, vol. 195(C).
    8. Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
    9. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    10. Li, Peng & Wang, Zixuan & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "A multi-time-space scale optimal operation strategy for a distributed integrated energy system," Applied Energy, Elsevier, vol. 289(C).
    11. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    12. Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.
    13. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    14. Tan, Mao & Liao, Chengchen & Chen, Jie & Cao, Yijia & Wang, Rui & Su, Yongxin, 2023. "A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor," Applied Energy, Elsevier, vol. 343(C).
    15. Sun, zexian & Zhao, mingyu & Dong, yan & Cao, xin & Sun, Hexu, 2021. "Hybrid model with secondary decomposition, randomforest algorithm, clustering analysis and long short memory network principal computing for short-term wind power forecasting on multiple scales," Energy, Elsevier, vol. 221(C).
    16. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    17. Rubasinghe, Osaka & Zhang, Tingze & Zhang, Xinan & Choi, San Shing & Chau, Tat Kei & Chow, Yau & Fernando, Tyrone & Iu, Herbert Ho-Ching, 2023. "Highly accurate peak and valley prediction short-term net load forecasting approach based on decomposition for power systems with high PV penetration," Applied Energy, Elsevier, vol. 333(C).
    18. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    19. Wenxia You & Daopeng Guo & Yonghua Wu & Wenwu Li, 2023. "Multiple Load Forecasting of Integrated Energy System Based on Sequential-Parallel Hybrid Ensemble Learning," Energies, MDPI, vol. 16(7), pages 1-16, April.
    20. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Pengdan & Wang, Dan & Wang, Wei & Zhang, Xiuyu & Sun, Yuying, 2024. "A novel multi-energy load forecasting method based on building flexibility feature recognition technology and multi-task learning model integrating LSTM," Energy, Elsevier, vol. 308(C).
    2. Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
    3. Ma, Xin & Peng, Bo & Ma, Xiangxue & Tian, Changbin & Yan, Yi, 2023. "Multi-timescale optimization scheduling of regional integrated energy system based on source-load joint forecasting," Energy, Elsevier, vol. 283(C).
    4. Song, Cairong & Yang, Haidong & Cai, Jianyang & Yang, Pan & Bao, Hao & Xu, Kangkang & Meng, Xian-Bing, 2024. "Multi-energy load forecasting via hierarchical multi-task learning and spatiotemporal attention," Applied Energy, Elsevier, vol. 373(C).
    5. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    6. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
    7. Xie, Xiangmin & Ding, Yuhao & Sun, Yuanyuan & Zhang, Zhisheng & Fan, Jianhua, 2024. "A novel time-series probabilistic forecasting method for multi-energy loads," Energy, Elsevier, vol. 306(C).
    8. Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
    9. Peng, Daogang & Liu, Yu & Wang, Danhao & Zhao, Huirong & Qu, Bogang, 2024. "Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis," Energy, Elsevier, vol. 308(C).
    10. Hanwen Wang & Xiang Li & Haojun Hu & Yizhou Zhou, 2024. "Distributed Dispatch and Profit Allocation for Parks Using Co-Operative Game Theory and the Generalized Nash Bargaining Approach," Energies, MDPI, vol. 17(23), pages 1-19, December.
    11. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    12. Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
    13. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    14. Wang, Yongli & Wang, Huan & Meng, Xiao & Dong, Huanran & Chen, Xin & Xiang, Hao & Xing, Juntai, 2023. "Considering the dual endogenous-exogenous uncertainty integrated energy multiple load short-term forecast," Energy, Elsevier, vol. 285(C).
    15. Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
    16. Li, Feng & Liu, Shiheng & Wang, Tianhu & Liu, Ranran, 2024. "Optimal planning for integrated electricity and heat systems using CNN-BiLSTM-Attention network forecasts," Energy, Elsevier, vol. 309(C).
    17. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
    18. Li, Peng & Wang, Jiahao & Jia, Hongjie & Li, Jianfeng & Pan, Youpeng, 2024. "Operation optimization of community integrated energy system: Rationality evaluation of operation scheme and a new solution approach," Applied Energy, Elsevier, vol. 375(C).
    19. Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
    20. Shi, Jian & Teh, Jiashen & Alharbi, Bader & Lai, Ching-Ming, 2024. "Load forecasting for regional integrated energy system based on two-phase decomposition and mixture prediction model," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.