IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3569-d268391.html
   My bibliography  Save this article

Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data

Author

Listed:
  • Phathutshedzo Mpfumali

    (Department of Statistics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
    These authors contributed equally to this work.)

  • Caston Sigauke

    (Department of Statistics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
    These authors contributed equally to this work.)

  • Alphonce Bere

    (Department of Statistics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa)

  • Sophie Mulaudzi

    (Department of Physics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa)

Abstract

Due to its variability, solar power generation poses challenges to grid energy management. In order to ensure an economic operation of a national grid, including its stability, it is important to have accurate forecasts of solar power. The current paper discusses probabilistic forecasting of twenty-four hours ahead of global horizontal irradiance (GHI) using data from the Tellerie radiometric station in South Africa for the period August 2009 to April 2010. Variables are selected using a least absolute shrinkage and selection operator (Lasso) via hierarchical interactions and the parameters of the developed models are estimated using the Barrodale and Roberts’s algorithm. Two forecast combination methods are used in this study. The first is a convex forecast combination algorithm where the average loss suffered by the models is based on the pinball loss function. A second forecast combination method, which is quantile regression averaging (QRA), is also used. The best set of forecasts is selected based on the prediction interval coverage probability (PICP), prediction interval normalised average width (PINAW) and prediction interval normalised average deviation (PINAD). The results demonstrate that QRA gives more robust prediction intervals than the other models. A comparative analysis is done with two machine learning methods—stochastic gradient boosting and support vector regression—which are used as benchmark models. Empirical results show that the QRA model yields the most accurate forecasts compared to the machine learning methods based on the probabilistic error measures. Results on combining prediction interval limits show that the PMis the best prediction limits combination method as it gives a hit rate of 0.955 which is very close to the target of 0.95. This modelling approach is expected to help in optimising the integration of solar power in the national grid.

Suggested Citation

  • Phathutshedzo Mpfumali & Caston Sigauke & Alphonce Bere & Sophie Mulaudzi, 2019. "Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data," Energies, MDPI, vol. 12(18), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3569-:d:268391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    2. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    3. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    4. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    7. Tadao Hoshino, 2014. "Quantile regression estimation of partially linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 509-536, September.
    8. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    9. Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
    10. Juban, Romain & Ohlsson, Henrik & Maasoumy, Mehdi & Poirier, Louis & Kolter, J. Zico, 2016. "A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1094-1102.
    11. Anil Gaba & Ilia Tsetlin & Robert L. Winkler, 2017. "Combining Interval Forecasts," Decision Analysis, INFORMS, vol. 14(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jozef Barunik & Lubos Hanus, 2023. "Learning Probability Distributions of Day-Ahead Electricity Prices," Papers 2310.02867, arXiv.org, revised Oct 2023.
    2. Giorgio Guariso & Giuseppe Nunnari & Matteo Sangiorgio, 2020. "Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks," Energies, MDPI, vol. 13(15), pages 1-18, August.
    3. Bartosz Uniejewski, 2023. "Smoothing Quantile Regression Averaging: A new approach to probabilistic forecasting of electricity prices," Papers 2302.00411, arXiv.org, revised Nov 2024.
    4. Nosipho Zwane & Henerica Tazvinga & Christina Botai & Miriam Murambadoro & Joel Botai & Jaco de Wit & Brighton Mabasa & Siphamandla Daniel & Tafadzwanashe Mabhaudhi, 2022. "A Bibliometric Analysis of Solar Energy Forecasting Studies in Africa," Energies, MDPI, vol. 15(15), pages 1-23, July.
    5. Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
    6. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    7. Manoel Henriques de Sá Campos & Chigueru Tiba, 2020. "Global Horizontal Irradiance Modeling for All Sky Conditions Using an Image-Pixel Approach," Energies, MDPI, vol. 13(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
    2. Ashkan Zarnani & Soheila Karimi & Petr Musilek, 2019. "Quantile Regression and Clustering Models of Prediction Intervals for Weather Forecasts: A Comparative Study," Forecasting, MDPI, vol. 1(1), pages 1-20, October.
    3. Klaus Abberger, 2006. "Kernel smoothed prediction intervals for ARMA models," Statistical Papers, Springer, vol. 47(1), pages 1-15, January.
    4. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
    5. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
    7. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    8. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    9. Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
    10. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    11. Ly, Sel & Xie, Jiahang & Wolter, Franz-Erich & Nguyen, Hung D. & Weng, Yu, 2023. "T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory," Applied Energy, Elsevier, vol. 349(C).
    12. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    13. Takahiro Takamatsu & Hideaki Ohtake & Takashi Oozeki & Tosiyuki Nakaegawa & Yuki Honda & Masahiro Kazumori, 2021. "Regional Solar Irradiance Forecast for Kanto Region by Support Vector Regression Using Forecast of Meso-Ensemble Prediction System," Energies, MDPI, vol. 14(11), pages 1-18, June.
    14. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    15. Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
    16. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    17. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    18. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    19. repec:lan:wpaper:470 is not listed on IDEAS
    20. Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019. "Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 12(13), pages 1-12, July.
    21. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3569-:d:268391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.