IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3987-d393533.html
   My bibliography  Save this article

Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks

Author

Listed:
  • Giorgio Guariso

    (Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy)

  • Giuseppe Nunnari

    (Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy)

  • Matteo Sangiorgio

    (Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy)

Abstract

The problem of forecasting hourly solar irradiance over a multi-step horizon is dealt with by using three kinds of predictor structures. Two approaches are introduced: Multi-Model ( MM ) and Multi-Output ( MO ). Model parameters are identified for two kinds of neural networks, namely the traditional feed-forward (FF) and a class of recurrent networks, those with long short-term memory (LSTM) hidden neurons, which is relatively new for solar radiation forecasting. The performances of the considered approaches are rigorously assessed by appropriate indices and compared with standard benchmarks: the clear sky irradiance and two persistent predictors. Experimental results on a relatively long time series of global solar irradiance show that all the networks architectures perform in a similar way, guaranteeing a slower decrease of forecasting ability on horizons up to several hours, in comparison to the benchmark predictors. The domain adaptation of the neural predictors is investigated evaluating their accuracy on other irradiance time series, with different geographical conditions. The performances of FF and LSTM models are still good and similar between them, suggesting the possibility of adopting a unique predictor at the regional level. Some conceptual and computational differences between the network architectures are also discussed.

Suggested Citation

  • Giorgio Guariso & Giuseppe Nunnari & Matteo Sangiorgio, 2020. "Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks," Energies, MDPI, vol. 13(15), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3987-:d:393533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristian Crisosto & Martin Hofmann & Riyad Mubarak & Gunther Seckmeyer, 2018. "One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks," Energies, MDPI, vol. 11(11), pages 1-16, October.
    2. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    3. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    4. Sangiorgio, Matteo & Dercole, Fabio, 2020. "Robustness of LSTM neural networks for multi-step forecasting of chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.
    6. Promphak Dawan & Kobsak Sriprapha & Songkiate Kittisontirak & Terapong Boonraksa & Nitikorn Junhuathon & Wisut Titiroongruang & Surasak Niemcharoen, 2020. "Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model," Energies, MDPI, vol. 13(2), pages 1-18, January.
    7. Phathutshedzo Mpfumali & Caston Sigauke & Alphonce Bere & Sophie Mulaudzi, 2019. "Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data," Energies, MDPI, vol. 12(18), pages 1-28, September.
    8. Lauret, Philippe & Boland, John & Ridley, Barbara, 2013. "Bayesian statistical analysis applied to solar radiation modelling," Renewable Energy, Elsevier, vol. 49(C), pages 124-127.
    9. Mohamed Lotfi & Mohammad Javadi & Gerardo J. Osório & Cláudio Monteiro & João P. S. Catalão, 2020. "A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation," Energies, MDPI, vol. 13(1), pages 1-19, January.
    10. Mustafa Jaihuni & Jayanta Kumar Basak & Fawad Khan & Frank Gyan Okyere & Elanchezhian Arulmozhi & Anil Bhujel & Jihoon Park & Lee Deog Hyun & Hyeon Tae Kim, 2020. "A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms," Energies, MDPI, vol. 13(2), pages 1-20, January.
    11. Nailya Maitanova & Jan-Simon Telle & Benedikt Hanke & Matthias Grottke & Thomas Schmidt & Karsten von Maydell & Carsten Agert, 2020. "A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports," Energies, MDPI, vol. 13(3), pages 1-23, February.
    12. Youngsung Kwon & Alexis Kwasinski & Andres Kwasinski, 2019. "Solar Irradiance Forecast Using Naïve Bayes Classifier Based on Publicly Available Weather Forecasting Variables," Energies, MDPI, vol. 12(8), pages 1-13, April.
    13. Tyler McCandless & Susan Dettling & Sue Ellen Haupt, 2020. "Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction," Energies, MDPI, vol. 13(3), pages 1-14, February.
    14. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
    15. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
    2. Igor Cavalcante Torres & Daniel M. Farias & Andre L. L. Aquino & Chigueru Tiba, 2021. "Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage," Energies, MDPI, vol. 14(11), pages 1-28, June.
    3. Syed Muhammad Mohsin & Tahir Maqsood & Sajjad Ahmed Madani, 2022. "Solar and Wind Energy Forecasting for Green and Intelligent Migration of Traditional Energy Sources," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    4. Sangiorgio, Matteo & Dercole, Fabio & Guariso, Giorgio, 2021. "Forecasting of noisy chaotic systems with deep neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arumugham, Dinesh Rajan & Rajendran, Parvathy, 2021. "Modelling global solar irradiance for any location on earth through regression analysis using high-resolution data," Renewable Energy, Elsevier, vol. 180(C), pages 1114-1123.
    2. Aleksander Radovan & Viktor Šunde & Danijel Kučak & Željko Ban, 2021. "Solar Irradiance Forecast Based on Cloud Movement Prediction," Energies, MDPI, vol. 14(13), pages 1-25, June.
    3. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    4. Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
    5. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    6. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    7. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    8. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    9. Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.
    10. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    11. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    12. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    13. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    14. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    15. Abdel-Rahman Hedar & Majid Almaraashi & Alaa E. Abdel-Hakim & Mahmoud Abdulrahim, 2021. "Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces," Energies, MDPI, vol. 14(23), pages 1-29, November.
    16. Hasna Hissou & Said Benkirane & Azidine Guezzaz & Mourade Azrour & Abderrahim Beni-Hssane, 2023. "A Novel Machine Learning Approach for Solar Radiation Estimation," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    17. Hassan, Muhammed A. & Al-Ghussain, Loiy & Ahmad, Adnan Darwish & Abubaker, Ahmad M. & Khalil, Adel, 2022. "Aggregated independent forecasters of half-hourly global horizontal irradiance," Renewable Energy, Elsevier, vol. 181(C), pages 365-383.
    18. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Weyll, Arthur Lúcide Cotta & Kitagawa, Yasmin Kaore Lago & Araujo, Mirella Lima Saraiva & Ramos, Diogo Nunes da Silva & Lima, Francisco José Lopes de & Santos, Thalyta Soares dos & Jacondino, William , 2024. "Medium-term forecasting of global horizontal solar radiation in Brazil using machine learning-based methods," Energy, Elsevier, vol. 300(C).
    20. Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Chih-Lung, 2021. "Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks," Renewable Energy, Elsevier, vol. 179(C), pages 2300-2308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3987-:d:393533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.