IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4272-d361806.html
   My bibliography  Save this article

A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China

Author

Listed:
  • Yang Zhang

    (College of Environmental Science and Engineering, Peking University, Beijing 100871, China)

  • Zhenghui Fu

    (Chinese Research Academy of Environmental Sciences, Beijing 100871, China)

  • Yulei Xie

    (School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China)

  • Qing Hu

    (College of Environmental Science and Engineering, Peking University, Beijing 100871, China)

  • Zheng Li

    (College of Environmental Science and Engineering, Peking University, Beijing 100871, China)

  • Huaicheng Guo

    (College of Environmental Science and Engineering, Peking University, Beijing 100871, China)

Abstract

In this study, a comprehensive research framework coupled with electric power demand forecasting, a regional electric system planning model, and post-optimization analysis is proposed for electric power system management. For dealing with multiple forms of uncertainties and dynamics concerning energy utilization, capacity expansions, and environmental protection, the inexact two-stage stochastic robust programming optimization model was developed. The novel programming method, which integrates interval parameter programming (IPP), stochastic robust optimization (SRO), and two-stage stochastic programming (TSP), was applied to electric power system planning and management in Harbin, China. Furthermore, the Gray-Markov approach was employed for effective electricity consumption prediction, and the forecasted results can be described as interval values with corresponding occurrence probability, aiming to produce viable input parameters of the optimization model. Ten scenarios were analyzed with different emissions reduction levels and electricity power structure adjustment modes, and the technique for order of preference by similarity to ideal solution (TOPSIS) was selected to identify the most influential factors of planning decisions by selecting the optimal scheme. The results indicate that a diversified power structure that dominates by thermal power and is mainly supplemented by biomass power should be formed to ensure regional sustainable development and electricity power supply security in Harbin. In addition, power structure adjustment is more effective than the pollutants emission control for electricity power system management. The results are insightful for supporting supply-side energy reform, generating an electricity generation scheme, adjusting energy structures, and formulating energy consumption of local policies.

Suggested Citation

  • Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4272-:d:361806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahn, Yuchan & Han, Jeehoon, 2018. "Economic optimization of integrated network for utility supply and carbon dioxide mitigation with multi-site and multi-period demand uncertainties," Applied Energy, Elsevier, vol. 220(C), pages 723-734.
    2. Lebotsa, Moshoko Emily & Sigauke, Caston & Bere, Alphonce & Fildes, Robert & Boylan, John E., 2018. "Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem," Applied Energy, Elsevier, vol. 222(C), pages 104-118.
    3. Chahkoutahi, Fatemeh & Khashei, Mehdi, 2017. "A seasonal direct optimal hybrid model of computational intelligence and soft computing techniques for electricity load forecasting," Energy, Elsevier, vol. 140(P1), pages 988-1004.
    4. Pouria Sheikhahmadi & Ramyar Mafakheri & Salah Bahramara & Maziar Yazdani Damavandi & João P. S. Catalão, 2018. "Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs," Energies, MDPI, vol. 11(3), pages 1-17, March.
    5. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Decision support for strategic energy planning: A robust optimization framework," European Journal of Operational Research, Elsevier, vol. 280(2), pages 539-554.
    6. Seyed Ali Rakhshan, 2017. "Efficiency ranking of decision making units in data envelopment analysis by using TOPSIS-DEA method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 906-918, August.
    7. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    8. João Pires Gaspar & Pedro Dinis Gaspar & Pedro Dinho da Silva & Maria Paula Simões & Christophe Espírito Santo, 2018. "Energy Life-Cycle Assessment of Fruit Products—Case Study of Beira Interior’s Peach (Portugal)," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    9. Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
    10. Thang Trung Nguyen & Fazel Mohammadi, 2020. "Optimal Placement of TCSC for Congestion Management and Power Loss Reduction Using Multi-Objective Genetic Algorithm," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    11. Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
    12. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    13. Huang, Yun-Hsun & Wu, Jung-Hua & Hsu, Yu-Ju, 2016. "Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty," Energy, Elsevier, vol. 116(P1), pages 1145-1157.
    14. Wei, Sun & Yanfeng, Xu, 2017. "Research on China's energy supply and demand using an improved Grey-Markov chain model based on wavelet transform," Energy, Elsevier, vol. 118(C), pages 969-984.
    15. Jie Deng & Xiaohan Liu & Guofu Zhai, 2019. "Robust Design Optimization of Electromagnetic Actuators for Renewable Energy Systems Considering the Manufacturing Cost," Energies, MDPI, vol. 12(22), pages 1-18, November.
    16. Jin, S.W. & Li, Y.P. & Huang, G.H. & Nie, S., 2018. "Analyzing the performance of clean development mechanism for electric power systems under uncertain environment," Renewable Energy, Elsevier, vol. 123(C), pages 382-397.
    17. Zhen, J.L. & Huang, G.H. & Li, W. & Liu, Z.P. & Wu, C.B., 2017. "An inexact optimization model for regional electric system steady operation management considering integrated renewable resources," Energy, Elsevier, vol. 135(C), pages 195-209.
    18. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    19. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    2. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    3. Xiao Zhao & Xuhui Xia & Guodong Yu, 2019. "Primal-Dual Learning Based Risk-Averse Optimal Integrated Allocation of Hybrid Energy Generation Plants under Uncertainty," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
    5. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    8. Amina Irakoze & Han-Sung Choi & Kee-Han Kim, 2024. "Doing More with Less: Applying Low-Frequency Energy Data to Define Thermal Performance of House Units and Energy-Saving Opportunities," Energies, MDPI, vol. 17(16), pages 1-16, August.
    9. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    10. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    11. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    12. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    13. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    14. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    15. Yizhong Chen & Hongwei Lu & Jing Li & Pengdong Yan & He Peng, 2021. "Multi-Level Decision-Making for Inter-Regional Water Resources Management with Water Footprint Analysis and Shared Socioeconomic Pathways," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 481-503, January.
    16. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    17. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    18. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    19. Minh-Hieu Le & Wen-Min Lu, 2024. "An integrated multiple objective decision making approach for exploring the competitiveness of pharmaceutical multinational enterprises," Annals of Operations Research, Springer, vol. 341(1), pages 401-426, October.
    20. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4272-:d:361806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.