IDEAS home Printed from https://ideas.repec.org/f/ppa843.html
   My authors  Follow this author

Silvia Pandolfi

Personal Details

First Name:Silvia
Middle Name:
Last Name:Pandolfi
Suffix:
RePEc Short-ID:ppa843
[This author has chosen not to make the email address public]
Terminal Degree: (from RePEc Genealogy)

Affiliation

Dipartimento di Economia
Università degli Studi di Perugia

Perugia, Italy
http://www.econ.unipg.it/
RePEc:edi:deperit (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2015. "Composite likelihood inference for hidden Markov models for dynamic networks," MPRA Paper 67242, University Library of Munich, Germany.
  2. Silvia BACCI & Francesco BARTOLUCCI & Silvia PANDOLFI, 2015. "A joint model for longitudinal and survival data based on an AR(1) latent process," Working papers of the Department of Economics - University of Perugia (IT) 00014/2015, Università di Perugia, Dipartimento Economia.
  3. Bartolucci, Francesco & Giorgio E., Montanari & Pandolfi, Silvia, 2012. "Item selection by an extended Latent Class model: An application to nursing homes evaluation," MPRA Paper 38757, University Library of Munich, Germany.

Articles

  1. Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
  2. David Aristei & Silvia Bacci & Francesco Bartolucci & Silvia Pandolfi, 2021. "A bivariate finite mixture growth model with selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 759-793, September.
  3. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.
  4. Giorgio E. Montanari & Silvia Pandolfi, 2018. "Evaluation of long-term health care services through a latent Markov model with covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 151-173, March.
  5. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2018. "Dealing with reciprocity in dynamic stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 86-100.
  6. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2016. "Item selection by latent class-based methods: an application to nursing home evaluation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 245-262, June.
  7. Bartolucci, Francesco & Montanari, Giorgio E. & Pandolfi, Silvia, 2015. "Three-step estimation of latent Markov models with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 287-301.
  8. Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
  9. S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
  10. F. Bartolucci & G. Montanari & S. Pandolfi, 2012. "Dimensionality of the Latent Structure and Item Selection Via Latent Class Multidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 782-802, October.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Bartolucci, Francesco & Giorgio E., Montanari & Pandolfi, Silvia, 2012. "Item selection by an extended Latent Class model: An application to nursing homes evaluation," MPRA Paper 38757, University Library of Munich, Germany.

    Cited by:

    1. Pieroni, Luca & d'Agostino, Giorgio & Bartolucci, Francesco, 2013. "Identifying corruption through latent class models: evidence from transition economies," MPRA Paper 43981, University Library of Munich, Germany.
    2. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.
    3. Giorgio d’Agostino & Luca Pieroni, 2019. "Modelling Corruption Perceptions: Evidence from Eastern Europe and Central Asian Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(1), pages 311-341, February.

Articles

  1. David Aristei & Silvia Bacci & Francesco Bartolucci & Silvia Pandolfi, 2021. "A bivariate finite mixture growth model with selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 759-793, September.

    Cited by:

    1. David Aristei & Manuela Gallo, 2021. "Financial Knowledge, Confidence, and Sustainable Financial Behavior," Sustainability, MDPI, vol. 13(19), pages 1-21, September.

  2. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.

    Cited by:

    1. Simone Del Sarto & Michela Gnaldi, 2022. "Spare time use: profiles of Italian Millennials (beyond the media hype)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1403-1428, December.
    2. Robitzsch, Alexander, 2020. "About Still Nonignorable Consequences of (Partially) Ignoring Missing Item Responses in Large-scale Assessment," OSF Preprints hmy45, Center for Open Science.

  3. Giorgio E. Montanari & Silvia Pandolfi, 2018. "Evaluation of long-term health care services through a latent Markov model with covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 151-173, March.

    Cited by:

    1. Joan Gil & Paolo Li Donni & Eugenio Zucchelli, 2018. "Uncontrolled diabetes and health care utilisation: a bivariate Latent Markov model approach," UB School of Economics Working Papers 2018/382, University of Barcelona School of Economics.
    2. Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
    3. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.

  4. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2018. "Dealing with reciprocity in dynamic stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 86-100.

    Cited by:

    1. Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    2. Chabert-Liddell, Saint-Clair & Barbillon, Pierre & Donnet, Sophie & Lazega, Emmanuel, 2021. "A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).

  5. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2016. "Item selection by latent class-based methods: an application to nursing home evaluation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 245-262, June.

    Cited by:

    1. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.

  6. Bartolucci, Francesco & Montanari, Giorgio E. & Pandolfi, Silvia, 2015. "Three-step estimation of latent Markov models with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 287-301.

    Cited by:

    1. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    2. Giorgio E. Montanari & Silvia Pandolfi, 2018. "Evaluation of long-term health care services through a latent Markov model with covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 151-173, March.
    3. Roberto Mari & Antonello Maruotti, 2022. "A two-step estimator for generalized linear models for longitudinal data with time-varying measurement error," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 273-300, June.
    4. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    5. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
    6. Di Mari, Roberto & Bakk, Zsuzsa & Oser, Jennifer & Kuha, Jouni, 2023. "A two-step estimator for multilevel latent class analysis with covariates," LSE Research Online Documents on Economics 119994, London School of Economics and Political Science, LSE Library.
    7. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.

  7. Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.

    Cited by:

    1. Mike K. P. So & Wing Ki Liu & Amanda M. Y. Chu, 2018. "Bayesian Shrinkage Estimation Of Time-Varying Covariance Matrices In Financial Time Series," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 369-404, December.
    2. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.

  8. S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.

    Cited by:

    1. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    2. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    3. Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
    4. Silvia Bacci & Bruno Bertaccini, 2022. "A Mixture Hidden Markov Model to Mine Students’ University Curricula," Data, MDPI, vol. 7(2), pages 1-19, February.
    5. Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
    6. Francesca Bassi & Fulvia Pennoni & Luca Rossetto, 2020. "The Italian market of sparkling wines: Latent variable models for brand positioning, customer loyalty, and transitions across brands' preferences," Agribusiness, John Wiley & Sons, Ltd., vol. 36(4), pages 542-567, October.
    7. Giorgio E. Montanari & Silvia Pandolfi, 2018. "Evaluation of long-term health care services through a latent Markov model with covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 151-173, March.
    8. Leonard Paas, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 473-477, September.
    9. Silvia Bacci & Francesco Bartolucci & Giulia Bettin & Claudia Pigini, 2017. "A mixture growth model for migrants' remittances: An application to the German Socio-Economic Panel," Mo.Fi.R. Working Papers 145, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    10. David Aristei & Silvia Bacci & Francesco Bartolucci & Silvia Pandolfi, 2021. "A bivariate finite mixture growth model with selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 759-793, September.
    11. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    12. Antonello Maruotti, 2015. "Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 84-109, March.
    13. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    14. Renske E. Kuijpers & Ingmar Visser & Dylan Molenaar, 2021. "Testing the Within-State Distribution in Mixture Models for Responses and Response Times," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 348-373, June.
    15. Geir D. Berentsen & Jan Bulla & Antonello Maruotti & Bård Støve, 2022. "Modelling clusters of corporate defaults: Regime‐switching models significantly reduce the contagion source," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 698-722, June.
    16. Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
    17. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    18. Bartolucci, Francesco & Pennoni, Fulvia & Vittadini, Giorgio, 2015. "Causal latent Markov model for the comparison of multiple treatments in observational longitudinal studies," MPRA Paper 66492, University Library of Munich, Germany.
    19. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    20. Hans Jørn Juhl & Morten H. J. Fenger & John Thøgersen, 2017. "Will the Consistent Organic Food Consumer Step Forward? An Empirical Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(3), pages 519-535.
    21. Philippe Carette & Marie-Anne Guerry, 2022. "Markov models for duration-dependent transitions: selecting the states using duration values or duration intervals?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1203-1223, December.

  9. F. Bartolucci & G. Montanari & S. Pandolfi, 2012. "Dimensionality of the Latent Structure and Item Selection Via Latent Class Multidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 782-802, October.

    Cited by:

    1. Francesco Dotto & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "A dynamic inhomogeneous latent state model for measuring material deprivation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 495-516, February.
    2. Michela Gnaldi & Simone Del Sarto, 2018. "Time Use Habits of Italian Generation Y: Dimensions of Leisure Preferences," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 1187-1203, August.
    3. Michael Brusco & Hans-Friedrich Köhn & Douglas Steinley, 2015. "An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 949-967, December.
    4. Michela Gnaldi & Simone Del Sarto, 2018. "Variable Weighting via Multidimensional IRT Models in Composite Indicators Construction," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 1139-1156, April.
    5. Simone Del Sarto & Michela Gnaldi, 2022. "Spare time use: profiles of Italian Millennials (beyond the media hype)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1403-1428, December.
    6. Silvia Bacci & Michela Gnaldi, 2015. "A classification of university courses based on students’ satisfaction: an application of a two-level mixture item response model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 927-940, May.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 3 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (3) 2012-05-22 2015-10-25 2015-11-21
  2. NEP-DCM: Discrete Choice Models (1) 2015-10-25
  3. NEP-NET: Network Economics (1) 2015-10-25
  4. NEP-ORE: Operations Research (1) 2015-10-25

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Silvia Pandolfi should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.