IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v158y2021ics016794732100013x.html
   My bibliography  Save this article

A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations

Author

Listed:
  • Chabert-Liddell, Saint-Clair
  • Barbillon, Pierre
  • Donnet, Sophie
  • Lazega, Emmanuel

Abstract

A multilevel network is defined as the junction of two interaction networks, one level representing the interactions between individuals and the other the interactions between organizations. The levels are linked by an affiliation relationship, each individual belonging to a unique organization. A new Stochastic Block Model is proposed as a unified probabilistic framework tailored for multilevel networks. This model contains latent blocks accounting for heterogeneity in the patterns of connection within each level and introducing dependencies between the levels. The sought connection patterns are not specified a priori which makes this approach flexible. Variational methods are used for the model inference and an Integrated Classified Likelihood criterion is developed for choosing the number of blocks and also for deciding whether the two levels are dependent or not. A comprehensive simulation study exhibits the benefit of considering this approach, illustrates the robustness of the clustering and highlights the reliability of the criterion used for model selection. This approach is applied on a sociological dataset collected during a television program trade fair, the inter-organizational level being the economic network between companies and the inter-individual level being the informal network between their representatives. It brings a synthetic representation of the two networks unraveling their intertwined structure and confirms the coopetition at stake.

Suggested Citation

  • Chabert-Liddell, Saint-Clair & Barbillon, Pierre & Donnet, Sophie & Lazega, Emmanuel, 2021. "A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:csdana:v:158:y:2021:i:c:s016794732100013x
    DOI: 10.1016/j.csda.2021.107179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732100013X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. repec:dau:papers:123456789/5181 is not listed on IDEAS
    3. Pierre Barbillon & Sophie Donnet & Emmanuel Lazega & Avner Bar-Hen, 2017. "Stochastic block models for multiplex networks: an application to a multilevel network of researchers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 295-314, January.
    4. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. Julien Brailly, 2016. "Dynamics of networks in trade fairs—A multilevel relational approach to the cooperation among competitors," Journal of Economic Geography, Oxford University Press, vol. 16(6), pages 1279-1301.
    7. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2018. "Dealing with reciprocity in dynamic stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 86-100.
    8. Catherine Matias & Vincent Miele, 2017. "Statistical clustering of temporal networks through a dynamic stochastic block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1119-1141, September.
    9. repec:dau:papers:123456789/1095 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Xinyan & Fang, Kuangnan & Pu, Dan & Qin, Ruixuan, 2024. "Generalized latent space model for one-mode networks with awareness of two-mode networks," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    2. Fabio Ashtar Telarico & Franc Mali & Aleš Žiberna, 2024. "Revealing dynamic co-authorship structure in the social sciences through blockmodeling: the Slovenian case (1991–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5635-5672, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Federico & Ayoub Mounim & Pierpaolo D’Urso & Livia De Giovanni, 2024. "Complex networks and deep learning for copper flow across countries," Annals of Operations Research, Springer, vol. 339(1), pages 937-963, August.
    2. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    3. Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    4. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    5. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    6. Paul Riverain & Simon Fossier & Mohamed Nadif, 2023. "Poisson degree corrected dynamic stochastic block model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 135-162, March.
    7. Gupta, Mayetri, 2014. "An evolutionary Monte Carlo algorithm for Bayesian block clustering of data matrices," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 375-391.
    8. Dragana M. Pavlović & Bryan R.L. Guillaume & Soroosh Afyouni & Thomas E. Nichols, 2020. "Multi‐subject stochastic blockmodels with mixed effects for adaptive analysis of individual differences in human brain network cluster structure," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 363-396, August.
    9. Mengbing Li & Daniel E. Park & Maliha Aziz & Cindy M. Liu & Lance B. Price & Zhenke Wu, 2023. "Integrating sample similarities into latent class analysis: a tree‐structured shrinkage approach," Biometrics, The International Biometric Society, vol. 79(1), pages 264-279, March.
    10. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2018. "Dealing with reciprocity in dynamic stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 86-100.
    11. Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
    12. C Matias & T Rebafka & F Villers, 2018. "A semiparametric extension of the stochastic block model for longitudinal networks," Biometrika, Biometrika Trust, vol. 105(3), pages 665-680.
    13. Luca Benedetti & Eric Boniardi & Leonardo Chiani & Jacopo Ghirri & Marta Mastropietro & Andrea Cappozzo & Francesco Denti, 2024. "Variational inference for semiparametric Bayesian novelty detection in large datasets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 681-703, September.
    14. Francesca Martella & Maurizio Vichi, 2012. "Clustering microarray data using model-based double K -means," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 1853-1869, April.
    15. Tu, Wangshu & Browne, Ryan & Subedi, Sanjeena, 2024. "A mixture of logistic skew-normal multinomial models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    16. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    17. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    18. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    19. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    20. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:158:y:2021:i:c:s016794732100013x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.