IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v72y2014icp298-314.html
   My bibliography  Save this article

A generalized multiple-try version of the Reversible Jump algorithm

Author

Listed:
  • Pandolfi, Silvia
  • Bartolucci, Francesco
  • Friel, Nial

Abstract

The Reversible Jump algorithm is one of the most widely used Markov chain Monte Carlo algorithms for Bayesian estimation and model selection. A generalized multiple-try version of this algorithm is proposed. The algorithm is based on drawing several proposals at each step and randomly choosing one of them on the basis of weights (selection probabilities) that may be arbitrarily chosen. Among the possible choices, a method is employed which is based on selection probabilities depending on a quadratic approximation of the posterior distribution. Moreover, the implementation of the proposed algorithm for challenging model selection problems, in which the quadratic approximation is not feasible, is considered. The resulting algorithm leads to a gain in efficiency with respect to the Reversible Jump algorithm, and also in terms of computational effort. The performance of this approach is illustrated for real examples involving a logistic regression model and a latent class model.

Suggested Citation

  • Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
  • Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:298-314
    DOI: 10.1016/j.csda.2013.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003605
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David I. Hastie & Peter J. Green, 2012. "Model choice using reversible jump Markov chain Monte Carlo," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 309-338, August.
    2. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
    3. Ajay Jasra & David A. Stephens & Christopher C. Holmes, 2007. "Population-Based Reversible Jump Markov Chain Monte Carlo," Biometrika, Biometrika Trust, vol. 94(4), pages 787-807.
    4. Olivier Cappé & Christian P. Robert & Tobias Rydén, 2003. "Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 679-700, August.
    5. Liu, Rui-Yin & Tao, Jian & Shi, Ning-Zhong & He, Xuming, 2011. "Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1498-1508, March.
    6. Nial Friel & Jason Wyse, 2012. "Estimating the evidence – a review," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 288-308, August.
    7. Francesco Bartolucci & Luisa Scaccia & Antonietta Mira, 2006. "Efficient Bayes factor estimation from the reversible jump output," Biometrika, Biometrika Trust, vol. 93(1), pages 41-52, March.
    8. Martino, Luca & Del Olmo, Victor Pascual & Read, Jesse, 2012. "A multi-point Metropolis scheme with generic weight functions," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1445-1453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
    2. Mike K. P. So & Wing Ki Liu & Amanda M. Y. Chu, 2018. "Bayesian Shrinkage Estimation Of Time-Varying Covariance Matrices In Financial Time Series," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 369-404, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
    2. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    3. David I. Hastie & Peter J. Green, 2012. "Model choice using reversible jump Markov chain Monte Carlo," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 309-338, August.
    4. Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
    5. Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015. "Generalized exogenous processes in DSGE: A Bayesian approach," SFB 649 Discussion Papers 2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. McGrory, C.A. & Pettitt, A.N. & Faddy, M.J., 2009. "A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4311-4321, October.
    7. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    8. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
    9. C. Berrett & B. Gurney & D. Arthur & T. Moon & G. P. Williams, 2023. "A Bayesian change point modeling approach to identify local temperature changes related to urbanization," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    10. Bouranis, Lampros & Friel, Nial & Maire, Florian, 2018. "Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 221-241.
    11. Fabrizio Leisen & Roberto Casarin & David Luengo & Luca Martino, 2013. "Adaptive Sticky Generalized Metropolis," Working Papers 2013:19, Department of Economics, University of Venice "Ca' Foscari".
    12. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    13. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
    14. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    15. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    16. Chen, Langnan & Luo, Jiawen & Liu, Hao, 2013. "The determinants of liquidity with G-RJMCMC-VS model: Evidence from China," Economic Modelling, Elsevier, vol. 35(C), pages 192-198.
    17. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    18. Philippe, Anne, 2006. "Bayesian analysis of autoregressive moving average processes with unknown orders," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1904-1923, December.
    19. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    20. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:298-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.