IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i3d10.1007_s00180-019-00878-y.html
   My bibliography  Save this article

A multiple-try Metropolis–Hastings algorithm with tailored proposals

Author

Listed:
  • Xin Luo

    (Norwegian University of Science and Technology)

  • Håkon Tjelmeland

    (Norwegian University of Science and Technology)

Abstract

We present a new multiple-try Metropolis–Hastings algorithm designed to be especially beneficial when a tailored proposal distribution is available. The algorithm is based on a given acyclic graph $$\mathcal {G}$$ G , where one of the nodes in $$\mathcal {G}$$ G , k say, contains the current state of the Markov chain and the remaining nodes contain proposed states generated by applying the tailored proposal distribution. The Metropolis–Hastings algorithm alternates between two types of updates. The first type of update is using the tailored proposal distribution to generate new states for all nodes in $$\mathcal {G}$$ G except node k. The second type of update is generating a new value for k, thereby changing the value of the current state. We evaluate the effectiveness of the proposed scheme in two examples with previously defined target and proposal distributions.

Suggested Citation

  • Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00878-y
    DOI: 10.1007/s00180-019-00878-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00878-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00878-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cressie, Noel & Davidson, Jennifer L., 1998. "Image analysis with partially ordered markov models," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 1-26, November.
    2. L. Martino & F. Louzada, 2017. "Issues in the Multiple Try Metropolis mixing," Computational Statistics, Springer, vol. 32(1), pages 239-252, March.
    3. Hakon Tjelmeland & Bjorn Kare Hegstad, 2001. "Mode Jumping Proposals in MCMC," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 205-223, March.
    4. Luca Martino & Jesse Read, 2013. "On the flexibility of the design of multiple try Metropolis schemes," Computational Statistics, Springer, vol. 28(6), pages 2797-2823, December.
    5. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
    6. Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
    7. Martino, Luca & Del Olmo, Victor Pascual & Read, Jesse, 2012. "A multi-point Metropolis scheme with generic weight functions," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1445-1453.
    8. Geir Storvik, 2011. "On the Flexibility of Metropolis–Hastings Acceptance Probabilities in Auxiliary Variable Proposal Generation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(2), pages 342-358, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    2. Holbrook, Andrew J., 2023. "Generating MCMC proposals by randomly rotating the regular simplex," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Martino & Jesse Read, 2013. "On the flexibility of the design of multiple try Metropolis schemes," Computational Statistics, Springer, vol. 28(6), pages 2797-2823, December.
    2. F. Din-Houn Lau & Sebastian Krumscheid, 2022. "Plateau proposal distributions for adaptive component-wise multiple-try metropolis," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 343-370, December.
    3. L. Martino & F. Louzada, 2017. "Issues in the Multiple Try Metropolis mixing," Computational Statistics, Springer, vol. 32(1), pages 239-252, March.
    4. Fabrizio Leisen & Roberto Casarin & David Luengo & Luca Martino, 2013. "Adaptive Sticky Generalized Metropolis," Working Papers 2013:19, Department of Economics, University of Venice "Ca' Foscari".
    5. Noel Cressie & Jun Zhu & Adrian J. Baddeley & M. Gopalan Nair, 2000. "Directed Markov Point Processes as Limits of Partially Ordered Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 2(1), pages 5-21, April.
    6. Noel Cressie & Andrew Zammit-Mangion, 2016. "Multivariate spatial covariance models: a conditional approach," Biometrika, Biometrika Trust, vol. 103(4), pages 915-935.
    7. Mariano Kulish & James Morley & Tim Robinson, 2014. "Estimating the expected duration of the zero lower bound in DSGE models with forward guidance," Discussion Papers 2014-32, School of Economics, The University of New South Wales.
    8. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    9. Peter Rosenkranz & Tobias Straumann & Ulrich Woitek, 2022. "The limits of internal devaluation: Switzerland during the great depression," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-17, December.
    10. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    11. Martino, Luca & Del Olmo, Victor Pascual & Read, Jesse, 2012. "A multi-point Metropolis scheme with generic weight functions," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1445-1453.
    12. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    13. Siddhartha Chib & Minchul Shin & Fei Tan, 2023. "DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 69-111, January.
    14. Dube, Arindrajit & Lester, T. William & Reich, Michael, 2011. "Do Frictions Matter in the Labor Market? Accessions, Separations and Minimum Wage Effects," IZA Discussion Papers 5811, Institute of Labor Economics (IZA).
    15. Born, Benjamin & Peter, Alexandra & Pfeifer, Johannes, 2013. "Fiscal news and macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2582-2601.
    16. Xiao-Li Gong & Jin-Yan Lu & Xiong Xiong & Wei Zhang, 2022. "Higher-order dynamic effects of uncertainty risk under thick-tailed stochastic volatility," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
    17. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    18. Noel Cressie & Craig Liu, 2001. "Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence," Methodology and Computing in Applied Probability, Springer, vol. 3(1), pages 5-34, March.
    19. Andreas Masuhr, 2019. "Big in Japan: Global Volatility Transmission between Assets and Trading Places," CQE Working Papers 8119, Center for Quantitative Economics (CQE), University of Muenster.
    20. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00878-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.