Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-014-0397-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
- Caroline Beunckens & Geert Molenberghs & Geert Verbeke & Craig Mallinckrodt, 2008. "A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data," Biometrics, The International Biometric Society, vol. 64(1), pages 96-105, March.
- McQuarrie, Allan & Shumway, Robert & Tsai, Chih-Ling, 1997. "The model selection criterion AICu," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 285-292, June.
- Garrett M. Fitzmaurice, 2003. "Methods for Handling Dropouts in Longitudinal Clinical Trials," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 75-99, February.
- Spagnoli, Alessandra & Henderson, Robin & Boys, Richard J. & Houwing-Duistermaat, Jeanine J., 2011. "A hidden Markov model for informative dropout in longitudinal response data with crisis states," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 730-738, July.
- Iain L. MacDonald, 2014. "Numerical Maximisation of Likelihood: A Neglected Alternative to EM?," International Statistical Review, International Statistical Institute, vol. 82(2), pages 296-308, August.
- S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
- Delattre, M. & Lavielle, M., 2012. "Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2073-2085.
- Joseph Ibrahim & Geert Molenberghs, 2009. "Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 1-43, May.
- Joseph Ibrahim & Geert Molenberghs, 2009. "Rejoinder on: Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 68-75, May.
- Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
- Jan Bulla & Andreas Berzel, 2008. "Computational issues in parameter estimation for stationary hidden Markov models," Computational Statistics, Springer, vol. 23(1), pages 1-18, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
- Maria Marino & Marco Alfó, 2015. "Latent drop-out based transitions in linear quantile hidden Markov models for longitudinal responses with attrition," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 483-502, December.
- Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
- Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
- Roberto Mari & Antonello Maruotti, 2022. "A two-step estimator for generalized linear models for longitudinal data with time-varying measurement error," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 273-300, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
- Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
- Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
- Zhou, Jing & Lan, Wei & Wang, Hansheng, 2022. "Asymptotic covariance estimation by Gaussian random perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
- Cai, T. Tony & Zhang, Anru, 2016. "Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 55-74.
- David Aristei & Silvia Bacci & Francesco Bartolucci & Silvia Pandolfi, 2021. "A bivariate finite mixture growth model with selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 759-793, September.
- Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014.
"Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
- Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
- Li, Chao & Sun, Daoming, 2023. "Women’s bargaining power and spending on children’s education: Evidence from a natural experiment in China," International Journal of Educational Development, Elsevier, vol. 100(C).
- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
- Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
- Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
- Li, Chao & Zhang, Yuhan & Li, Xiang & Hao, Yanwei, 2024. "Artificial intelligence, household financial fragility and energy resources consumption: Impacts of digital disruption from a demand-based perspective," Resources Policy, Elsevier, vol. 88(C).
- Tithi Biswas & Kylie H. Kang & Rohin Gawdi & David Bajor & Mitchell Machtay & Charu Jindal & Jimmy T. Efird, 2020. "Using the Systemic Immune-Inflammation Index (SII) as a Mid-Treatment Marker for Survival among Patients with Stage-III Locally Advanced Non-Small Cell Lung Cancer (NSCLC)," IJERPH, MDPI, vol. 17(21), pages 1-13, October.
- D. Claire Miller & Samantha MaWhinney & Jennifer L. Patnaik & Karen L. Christopher & Anne M. Lynch & Brandie D. Wagner, 2022. "Predictors of refraction prediction error after cataract surgery: a shared parameter model to account for missing post-operative measurements," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 343-364, June.
- Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
- Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016.
"Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies,"
Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
- Bartolucci, Francesco & Pennoni, Fulvia & Vittadini, Giorgio, 2015. "Causal latent Markov model for the comparison of multiple treatments in observational longitudinal studies," MPRA Paper 66492, University Library of Munich, Germany.
More about this item
Keywords
Hidden Markov chains; Conditional maximum likelihood; Non-ignorable missingness; Longitudinal data; Skin cancer; Primary 62J12; 60J20; Secondary 62P10;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:1:p:84-109. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.