IDEAS home Printed from https://ideas.repec.org/a/spr/soinre/v146y2019i1d10.1007_s11205-018-1947-7.html
   My bibliography  Save this article

Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects

Author

Listed:
  • Giorgio E. Montanari

    (University of Perugia)

  • Marco Doretti

    (University of Perugia)

Abstract

In this paper, we aim at ranking a set of nursing homes based on their ability in maintaining their residents’ physical conditions as good as possible. In this respect, we propose a nursing home performance indicator, which is essentially a probability to avoid resident health status worsening. Specifically, latent Markov models with covariates and normally distributed continuous random effects are fitted to produce standardised 180-day ahead transition matrices, upon which the aforementioned index is based. Nursing home effects on these transition matrices are modelled through fixed as well as random effects. The performance index is used to build two distinct rankings, one of which also accounts for the variability induced by the estimation process. In this framework, several rankings can be obtained by combining the model specification (fixed vs. random effects), the kind of ranking and the number of latent states, which is the typical sensitivity parameter of latent Markov models. Our methodological approach is applied to a dataset which was gathered from a health protocol implemented in Umbria (Italy). Results for this data show a rather high degree of robustness, in the sense that the obtained rankings are almost the same.

Suggested Citation

  • Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
  • Handle: RePEc:spr:soinre:v:146:y:2019:i:1:d:10.1007_s11205-018-1947-7
    DOI: 10.1007/s11205-018-1947-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11205-018-1947-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11205-018-1947-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonello Maruotti, 2011. "Mixed Hidden Markov Models for Longitudinal Data: An Overview," International Statistical Review, International Statistical Institute, vol. 79(3), pages 427-454, December.
    2. Evelyn Kitagawa, 1964. "Standardized comparisons in population research," Demography, Springer;Population Association of America (PAA), vol. 1(1), pages 296-315, March.
    3. Giorgio E. Montanari & Silvia Pandolfi, 2018. "Evaluation of long-term health care services through a latent Markov model with covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 151-173, March.
    4. D. Oakes, 1999. "Direct calculation of the information matrix via the EM," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 479-482, April.
    5. Harvey Goldstein & Michael J. R. Healy, 1995. "The Graphical Presentation of a Collection of Means," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(1), pages 175-177, January.
    6. Jeroen K. Vermunt & Rolf Langeheine & Ulf Bockenholt, 1999. "Discrete-Time Discrete-State Latent Markov Models with Time-Constant and Time-Varying Covariates," Journal of Educational and Behavioral Statistics, , vol. 24(2), pages 179-207, June.
    7. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    8. Afshartous, David & Preston, Richard A., 2010. "Confidence intervals for dependent data: Equating non-overlap with statistical significance," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2296-2305, October.
    9. Michela Gnaldi & M. Giovanna Ranalli, 2016. "Measuring University Performance by Means of Composite Indicators: A Robustness Analysis of the Composite Measure Used for the Benchmark of Italian Universities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(2), pages 659-675, November.
    10. S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
    11. Francesco Bartolucci & Silvia Bacci & Fulvia Pennoni, 2014. "Longitudinal analysis of self-reported health status by mixture latent auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 267-288, February.
    12. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2011. "Assessment of School Performance Through a Multilevel Latent Markov Rasch Model," Journal of Educational and Behavioral Statistics, , vol. 36(4), pages 491-522, August.
    13. repec:wly:hlthec:v:26:y:2017:i::p:5-22 is not listed on IDEAS
    14. Giorgio Vittadini & Simona Caterina Minotti, 2005. "A methodology for measuring the relative effectiveness of healthcare services," Working Papers 20050401, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.
    15. Makai, Peter & Brouwer, Werner B.F. & Koopmanschap, Marc A. & Stolk, Elly A. & Nieboer, Anna P., 2014. "Quality of life instruments for economic evaluations in health and social care for older people: A systematic review," Social Science & Medicine, Elsevier, vol. 102(C), pages 83-93.
    16. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    17. Carla Rampichini & Leonardo Grilli & Alessandra Petrucci, 2004. "Analysis of university course evaluations: from descriptive measures to multilevel models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(3), pages 357-373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. De Novellis & M. Doretti & G. E. Montanari & M. G. Ranalli & N. Salvati, 2024. "Performance evaluation of nursing homes using finite mixtures of logistic models and M-quantile regression for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 753-781, July.
    2. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    2. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    3. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    4. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    5. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    6. Silvia Bacci & Bruno Bertaccini, 2022. "A Mixture Hidden Markov Model to Mine Students’ University Curricula," Data, MDPI, vol. 7(2), pages 1-19, February.
    7. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    8. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
    9. Jesse D. Raffa & Joel A. Dubin, 2015. "Multivariate longitudinal data analysis with mixed effects hidden Markov models," Biometrics, The International Biometric Society, vol. 71(3), pages 821-831, September.
    10. David Aristei & Silvia Bacci & Francesco Bartolucci & Silvia Pandolfi, 2021. "A bivariate finite mixture growth model with selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 759-793, September.
    11. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    12. Xinyuan Song & Yemao Xia & Hongtu Zhu, 2017. "Hidden Markov latent variable models with multivariate longitudinal data," Biometrics, The International Biometric Society, vol. 73(1), pages 313-323, March.
    13. Joan Gil & Paolo Li Donni & Eugenio Zucchelli, 2019. "Uncontrolled diabetes and health care utilisation: A bivariate latent Markov model approach," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1262-1276, November.
    14. Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
    15. Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    16. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    17. Isabella Sulis & Mariano Porcu & Vincenza Capursi, 2019. "On the Use of Student Evaluation of Teaching: A Longitudinal Analysis Combining Measurement Issues and Implications of the Exercise," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(3), pages 1305-1331, April.
    18. Ruijin Lu & Tonja R. Nansel & Zhen Chen, 2023. "A Perception-Augmented Hidden Markov Model for Parent–Child Relations in Families of Youth with Type 1 Diabetes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 288-308, April.
    19. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    20. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:soinre:v:146:y:2019:i:1:d:10.1007_s11205-018-1947-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.