Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies
Author
Abstract
Suggested Citation
DOI: 10.3102/1076998615622234
Download full text from publisher
Other versions of this item:
- Bartolucci, Francesco & Pennoni, Fulvia & Vittadini, Giorgio, 2015. "Causal latent Markov model for the comparison of multiple treatments in observational longitudinal studies," MPRA Paper 66492, University Library of Munich, Germany.
References listed on IDEAS
- James Heckman, 2011.
"Policies to foster human capital,"
Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 3, pages 73-137.
- Heckman, James J., 2000. "Policies to foster human capital," Research in Economics, Elsevier, vol. 54(1), pages 3-56, March.
- James J. Heckman, 1999. "Policies to Foster Human Capital," NBER Working Papers 7288, National Bureau of Economic Research, Inc.
- James J. Heckman, 2000. "Policies to Foster Human Capital," JCPR Working Papers 154, Northwestern University/University of Chicago Joint Center for Poverty Research.
- James Heckman, 2000. "Policies to Foster Human Capital," Working Papers 0028, Harris School of Public Policy Studies, University of Chicago.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Angrist, Joshua D., 1991.
"Grouped-data estimation and testing in simple labor-supply models,"
Journal of Econometrics, Elsevier, vol. 47(2-3), pages 243-266, February.
- Joshua D. Angrist, 1988. "Grouped Data Estimation and Testing in Simple Labor Supply Models," Working Papers 614, Princeton University, Department of Economics, Industrial Relations Section..
- Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2011. "Assessment of School Performance Through a Multilevel Latent Markov Rasch Model," Journal of Educational and Behavioral Statistics, , vol. 36(4), pages 491-522, August.
- Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
- Francesco Bartolucci, 2006. "Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 155-178, April.
- Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Edward Ip & Qiang Zhang & Jack Rejeski & Tammy Harris & Stephen Kritchevsky, 2013. "Partially Ordered Mixed Hidden Markov Model for the Disablement Process of Older Adults," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 370-384, June.
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014.
"Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
- Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
- Odd O. Aalen & Kjetil Røysland & Jon Michael Gran & Bruno Ledergerber, 2012. "Causality, mediation and time: a dynamic viewpoint," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 831-861, October.
- S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
- Gao, Xin & Song, Peter X.-K., 2010. "Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1531-1540.
- Hernan M. A & Brumback B. & Robins J. M, 2001. "Marginal Structural Models to Estimate the Joint Causal Effect of Nonrandomized Treatments," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 440-448, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
- Pantelis Samartsidis & Shaun R. Seaman & Silvia Montagna & André Charlett & Matthew Hickman & Daniela De Angelis, 2020. "A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1437-1459, October.
- Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
- Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
- F. J. Clouth & S. Pauws & F. Mols & J. K. Vermunt, 2022. "A new three-step method for using inverse propensity weighting with latent class analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 351-371, June.
- Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2023. "A Causal Latent Transition Model With Multivariate Outcomes and Unobserved Heterogeneity: Application to Human Capital Development," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 387-419, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014.
"Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
- Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
- Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
- Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
- Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
- Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
- Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
- Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
- Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2023. "A Causal Latent Transition Model With Multivariate Outcomes and Unobserved Heterogeneity: Application to Human Capital Development," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 387-419, August.
- Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
- Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
- Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
- Francesco Bartolucci & Alessio Farcomeni, 2022. "A hidden Markov space–time model for mapping the dynamics of global access to food," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 246-266, January.
- Tani, Massimiliano & Xu, Lei & Zhu, Yu, 2021.
"The impact of an un(der)funded inclusive education policy: Evidence from the 2013 China education panel survey,"
Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 768-784.
- Tani, Massimiliano & Zhu, Yu & Xu, Lei, 2021. "The Impact of an Un(der)Funded Inclusive Education Policy: Evidence from the 2013 China Education Panel Survey," IZA Discussion Papers 14512, Institute of Labor Economics (IZA).
- Michael Lechner, 2004.
"Sequential Matching Estimation of Dynamic Causal Models,"
University of St. Gallen Department of Economics working paper series 2004
2004-06, Department of Economics, University of St. Gallen.
- Lechner, Michael, 2004. "Sequential Matching Estimation of Dynamic Causal Models," IZA Discussion Papers 1042, Institute of Labor Economics (IZA).
- Francesco Dotto & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "A dynamic inhomogeneous latent state model for measuring material deprivation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 495-516, February.
- Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
- Hang Miao & Kui Zhao & Zhun Wang & Linbo Jiang & Quanhui Jia & Yanming Fang & Quan Yu, 2020. "Intelligent Credit Limit Management in Consumer Loans Based on Causal Inference," Papers 2007.05188, arXiv.org.
- Bartolucci, Francesco & Lupparelli, Monia, 2012. "Nested hidden Markov chains for modeling dynamic unobserved heterogeneity in multilevel longitudinal data," MPRA Paper 40588, University Library of Munich, Germany.
- Geir D. Berentsen & Jan Bulla & Antonello Maruotti & Bård Støve, 2022. "Modelling clusters of corporate defaults: Regime‐switching models significantly reduce the contagion source," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 698-722, June.
More about this item
Keywords
causal inference; expectation–maximization algorithm; hidden Markov models; multiple treatments; policy evaluation; propensity score;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
- I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions
- J44 - Labor and Demographic Economics - - Particular Labor Markets - - - Professional Labor Markets and Occupations
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:41:y:2016:i:2:p:146-179. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.