IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/39023.html
   My bibliography  Save this paper

Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates

Author

Listed:
  • Bartolucci, Francesco
  • Farcomeni, Alessio
  • Pennoni, Fulvia

Abstract

We provide a comprehensive overview of latent Markov (LM) models for the analysis of longitudinal data. The main assumption behind these models is that the response variables are conditionally independent given a latent process which follows a first-order Markov chain. We first illustrate the more general version of the LM model which includes individual covariates. We then illustrate several constrained versions of the general LM model, which make the model more parsimonious and allow us to consider and test hypotheses of interest. These constraints may be put on the conditional distribution of the response variables given the latent process (measurement model) or on the distribution of the latent process (latent model). For the general version of the model we also illustrate in detail maximum likelihood estimation through the Expectation-Maximization algorithm, which may be efficiently implemented by recursions known in the hidden Markov literature. We discuss about the model identifiability and we outline methods for obtaining standard errors for the parameter estimates. We also illustrate methods for selecting the number of states and for path prediction. Finally, we illustrate Bayesian estimation method. Models and related inference are illustrated by the description of relevant socio-economic applications available in the literature.

Suggested Citation

  • Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:39023
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/39023/1/MPRA_paper_39023.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. Oakes, 1999. "Direct calculation of the information matrix via the EM," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 479-482, April.
    2. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    3. Luigi Spezia, 2010. "Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 1-11, January.
    4. R. C. H. Cheng & W. B. Liu, 2001. "The Consistency of Estimators in Finite Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 603-616, December.
    5. Francesco Bartolucci, 2006. "Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 155-178, April.
    6. Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
    7. Antonello Maruotti, 2011. "Mixed Hidden Markov Models for Longitudinal Data: An Overview," International Statistical Review, International Statistical Institute, vol. 79(3), pages 427-454, December.
    8. Francesco Bartolucci & Fulvia Pennoni & Brian Francis, 2007. "A latent Markov model for detecting patterns of criminal activity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 115-132, January.
    9. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    10. C. P. Robert & T. Rydén & D. M. Titterington, 2000. "Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 57-75.
    11. C. Yau & O. Papaspiliopoulos & G. O. Roberts & C. Holmes, 2011. "Bayesian non‐parametric hidden Markov models with applications in genomics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 37-57, January.
    12. Bornmann, Lutz & Mutz, Rüdiger & Daniel, Hans-Dieter, 2008. "Latent Markov modeling applied to grant peer review," Journal of Informetrics, Elsevier, vol. 2(3), pages 217-228.
    13. Farcomeni, Alessio, 2011. "Hidden Markov partition models," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1766-1770.
    14. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2011. "Assessment of School Performance Through a Multilevel Latent Markov Rasch Model," Journal of Educational and Behavioral Statistics, , vol. 36(4), pages 491-522, August.
    15. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    16. Turner, Rolf, 2008. "Direct maximization of the likelihood of a hidden Markov model," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4147-4160, May.
    17. S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
    18. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    19. Farcomeni Alessio & Arima Serena, 2012. "A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-31, June.
    20. Congdon, Peter, 2006. "Bayesian model choice based on Monte Carlo estimates of posterior model probabilities," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 346-357, January.
    21. Wilfried Seidel & Hana Ševčíková, 2004. "Types of likelihood maxima in mixture models and their implication on the performance of tests," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(4), pages 631-654, December.
    22. Fruhwirth-Schnatter S., 2001. "Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 194-209, March.
    23. Richard McHugh, 1956. "Efficient estimation and local identification in latent class analysis," Psychometrika, Springer;The Psychometric Society, vol. 21(4), pages 331-347, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    2. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    3. Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
    4. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
    5. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016. "Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
    6. Bartolucci, Francesco & Lupparelli, Monia, 2012. "Nested hidden Markov chains for modeling dynamic unobserved heterogeneity in multilevel longitudinal data," MPRA Paper 40588, University Library of Munich, Germany.
    7. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    8. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    9. Deschamps, Philippe J., 2006. "A flexible prior distribution for Markov switching autoregressions with Student-t errors," Journal of Econometrics, Elsevier, vol. 133(1), pages 153-190, July.
    10. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
    11. Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015. "Multilevel multivariate modelling of legislative count data, with a hidden Markov chain," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 705-723, June.
    12. Deschamps, Philippe J., 2006. "A flexible prior distribution for Markov switching autoregressions with Student-t errors," Journal of Econometrics, Elsevier, vol. 133(1), pages 153-190, July.
    13. Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
    14. Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
    15. Geir D. Berentsen & Jan Bulla & Antonello Maruotti & Bård Støve, 2022. "Modelling clusters of corporate defaults: Regime‐switching models significantly reduce the contagion source," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 698-722, June.
    16. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    17. David Aristei & Silvia Bacci & Francesco Bartolucci & Silvia Pandolfi, 2021. "A bivariate finite mixture growth model with selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 759-793, September.
    18. Xia, Ye-Mao & Tang, Nian-Sheng, 2019. "Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 190-211.
    19. Alessio Farcomeni & Luca Greco, 2015. "S-estimation of hidden Markov models," Computational Statistics, Springer, vol. 30(1), pages 57-80, March.
    20. Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.

    More about this item

    Keywords

    EM algorithm; Bayesian framework; Forward-Backward recursions; Hidden Markov models; Measurement errors; Panel data; Unobserved heterogeneity;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:39023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.