IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i12p2694-2714.html
   My bibliography  Save this article

Bayesian analysis of censored linear regression models with scale mixtures of normal distributions

Author

Listed:
  • Aldo M. Garay
  • Heleno Bolfarine
  • Victor H. Lachos
  • Celso R.B. Cabral

Abstract

As is the case of many studies, the data collected are limited and an exact value is recorded only if it falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear (and nonlinear) regression models are routinely used to analyze these types of data and are based on normality assumptions for the errors terms. However, those analyzes might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear regression models by replacing the Gaussian assumptions for the random errors with scale mixtures of normal (SMN) distributions. The SMN is an attractive class of symmetric heavy-tailed densities that includes the normal, Student- t , Pearson type VII, slash and the contaminated normal distributions, as special cases. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo algorithm is introduced to carry out posterior inference. A new hierarchical prior distribution is suggested for the degrees of freedom parameter in the Student- t distribution. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q -divergence measure. The proposed Bayesian methods are implemented in the R package BayesCR . The newly developed procedures are illustrated with applications using real and simulated data.

Suggested Citation

  • Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:12:p:2694-2714
    DOI: 10.1080/02664763.2015.1048671
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1048671
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1048671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stapleton, David C & Young, Douglas J, 1984. "Censored Normal Regression with Measurement Error on the Dependent Variable," Econometrica, Econometric Society, vol. 52(3), pages 737-760, May.
    2. Michelli Barros & Manuel Galea & Manuel González & Víctor Leiva, 2010. "Influence diagnostics in the tobit censored response model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 379-397, August.
    3. Lachos, Victor H. & Castro, Luis M. & Dey, Dipak K., 2013. "Bayesian inference in nonlinear mixed-effects models using normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 237-252.
    4. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    5. Reinaldo Arellano-Valle & Luis Castro & Graciela González-Farías & Karla Muñoz-Gajardo, 2012. "Student-t censored regression model: properties and inference," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 453-473, November.
    6. Nelson, Forrest D., 1977. "Censored regression models with unobserved, stochastic censoring thresholds," Journal of Econometrics, Elsevier, vol. 6(3), pages 309-327, November.
    7. S. Choy & A. Smith, 1997. "Hierarchical models with scale mixtures of normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 205-221, June.
    8. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    9. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    10. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    11. Cysneiros, Francisco Jose A. & Paula, Gilberto A., 2005. "Restricted methods in symmetrical linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 689-708, June.
    12. Thaís C. O. Fonseca & Marco A. R. Ferreira & Helio S. Migon, 2008. "Objective Bayesian analysis for the Student-t regression model," Biometrika, Biometrika Trust, vol. 95(2), pages 325-333.
    13. Villegas, Cristian & Paula, Gilberto A. & Cysneiros, Francisco José A. & Galea, Manuel, 2013. "Influence diagnostics in generalized symmetric linear models," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 161-170.
    14. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
    15. Fruhwirth-Schnatter, Sylvia & Tuchler, Regina & Otter, Thomas, 2004. "Bayesian Analysis of the Heterogeneity Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 2-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahad Jamalizadeh & Tsung-I Lin, 2017. "A general class of scale-shape mixtures of skew-normal distributions: properties and estimation," Computational Statistics, Springer, vol. 32(2), pages 451-474, June.
    2. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
    3. Guangpei Sun & Peng Jiang & Huan Xu & Shanen Yu & Dong Guo & Guang Lin & Hui Wu, 2019. "Outlier Detection and Correction for Monitoring Data of Water Quality Based on Improved VMD and LSSVM," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    4. Víctor H. Lachos & Celso R. B. Cabral & Marcos O. Prates & Dipak K. Dey, 2019. "Flexible regression modeling for censored data based on mixtures of student-t distributions," Computational Statistics, Springer, vol. 34(1), pages 123-152, March.
    5. Wesley Bertoli & Katiane S. Conceição & Marinho G. Andrade & Francisco Louzada, 2018. "On the zero-modified Poisson–Shanker regression model and its application to fetal deaths notification data," Computational Statistics, Springer, vol. 33(2), pages 807-836, June.
    6. Camila Borelli Zeller & Celso Rômulo Barbosa Cabral & Víctor Hugo Lachos & Luis Benites, 2019. "Finite mixture of regression models for censored data based on scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 89-116, March.
    7. Fengkai Yang & Haijing Yuan, 2017. "A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 579-597, April.
    8. Shuaimin Kang & Guangying Liu & Howard Qi & Min Wang, 2018. "Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 459-477, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine & Celso R. B. Cabral, 2017. "Linear censored regression models with scale mixtures of normal distributions," Statistical Papers, Springer, vol. 58(1), pages 247-278, March.
    2. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
    3. Víctor H. Lachos & Celso R. B. Cabral & Marcos O. Prates & Dipak K. Dey, 2019. "Flexible regression modeling for censored data based on mixtures of student-t distributions," Computational Statistics, Springer, vol. 34(1), pages 123-152, March.
    4. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    5. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    6. Aparecida Souza & Helio Migon, 2010. "Bayesian outlier analysis in binary regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1355-1368.
    7. Ding, Hao & Wang, Zhanfeng & Wu, Yaohua, 2017. "Tobit regression model with parameters of increasing dimensions," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 1-7.
    8. Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
    9. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    10. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    11. Florian Huber & Tam'as Krisztin & Michael Pfarrhofer, 2018. "A Bayesian panel VAR model to analyze the impact of climate change on high-income economies," Papers 1804.01554, arXiv.org, revised Feb 2021.
    12. Omori, Yasuhiro & Miyawaki, Koji, 2010. "Tobit model with covariate dependent thresholds," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2736-2752, November.
    13. Reinaldo Arellano-Valle & Luis Castro & Graciela González-Farías & Karla Muñoz-Gajardo, 2012. "Student-t censored regression model: properties and inference," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 453-473, November.
    14. Camila Borelli Zeller & Celso Rômulo Barbosa Cabral & Víctor Hugo Lachos & Luis Benites, 2019. "Finite mixture of regression models for censored data based on scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 89-116, March.
    15. Germán Ibacache-Pulgar & Gilberto Paula & Francisco Cysneiros, 2013. "Semiparametric additive models under symmetric distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 103-121, March.
    16. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    17. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
    18. Johannes Reichl & Sylvia Frühwirth-Schnatter, 2012. "A censored random coefficients model for the detection of zero willingness to pay," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 259-281, June.
    19. Francisco J. A. Cysneiros & Víctor Leiva & Shuangzhe Liu & Carolina Marchant & Paulo Scalco, 2019. "A Cobb–Douglas type model with stochastic restrictions: formulation, local influence diagnostics and data analytics in economics," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1693-1719, July.
    20. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:12:p:2694-2714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.