IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v52y2018i2d10.1007_s10614-017-9690-8.html
   My bibliography  Save this article

Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors

Author

Listed:
  • Shuaimin Kang

    (University of Massachusetts)

  • Guangying Liu

    (Nanjing Audit University)

  • Howard Qi

    (Michigan Technological University)

  • Min Wang

    (Michigan Technological University)

Abstract

Normality and static variance are very common assumptions in traditional financial theories and risk modeling for mathematical convenience. Empirical evidence suggests otherwise. With the rapid growth in volatility-based financial innovations and market, it is beneficial and essential to look beyond the traditional restrictive assumptions. This paper discusses Bayesian analysis of the variance changepoints problem in linear models with flexible error distributions. Specifically, we consider the class of scale mixtures of normal distributions, which not only exhibits symmetric heavy-tailed behavior, but also includes many common error distributions as special cases, such as the normal and Student-t distributions. Our proposed approach can reduce the influence of atypical observations and thus offer a robust technique for detecting the variance changepoints in many financial and economic data. We propose an efficient Gibbs sampling procedure to generate posterior samples and in turn to perform Bayesian inference. Simulation studies are conducted to demonstrate satisfactory performance of the proposed methodology. The closing price data set from the US stocks database is analyzed for illustrative purposes.

Suggested Citation

  • Shuaimin Kang & Guangying Liu & Howard Qi & Min Wang, 2018. "Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 459-477, August.
  • Handle: RePEc:kap:compec:v:52:y:2018:i:2:d:10.1007_s10614-017-9690-8
    DOI: 10.1007/s10614-017-9690-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9690-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9690-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
    2. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    3. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    4. Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.
    5. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    6. Abanto-Valle, Carlos A. & Dey, Dipak K., 2014. "State space mixed models for binary responses with scale mixture of normal distributions links," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 274-287.
    7. Jin-Guan Lin & Ji Chen & Yong Li, 2012. "Bayesian Analysis of Student t Linear Regression with Unknown Change-Point and Application to Stock Data Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 203-217, October.
    8. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    9. Li, Fuxiao & Tian, Zheng & Xiao, Yanting & Chen, Zhanshou, 2015. "Variance change-point detection in panel data models," Economics Letters, Elsevier, vol. 126(C), pages 140-143.
    10. Thaís C. O. Fonseca & Marco A. R. Ferreira & Helio S. Migon, 2008. "Objective Bayesian analysis for the Student-t regression model," Biometrika, Biometrika Trust, vol. 95(2), pages 325-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Y. Campbell & Tuomo Vuolteenaho, 2004. "Bad Beta, Good Beta," American Economic Review, American Economic Association, vol. 94(5), pages 1249-1275, December.
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Shaikh, Salman, 2013. "Investment Decisions by Analysts: A Case Study of KSE," MPRA Paper 53802, University Library of Munich, Germany.
    4. Boes, M.J., 2006. "Index options : Pricing, implied densities and returns," Other publications TiSEM e9ed8a9f-2472-430a-b666-9, Tilburg University, School of Economics and Management.
    5. Roman Mestre, 2021. "A wavelet approach of investing behaviors and their effects on risk exposures," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-37, December.
    6. repec:dau:papers:123456789/2514 is not listed on IDEAS
    7. David Morelli, 2002. "The robustness of tests of structural change in equity returns using factor analysis," Applied Economics, Taylor & Francis Journals, vol. 34(2), pages 241-251.
    8. Mario Alejandro Acosta R., 2014. "Las acciones como activo de reserva para el Banco de la República," Documentos CEDE 11004, Universidad de los Andes, Facultad de Economía, CEDE.
    9. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    10. Moon K. Kim & Chunchi Wu, 1987. "Macro-Economic Factors And Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 10(2), pages 87-98, June.
    11. Hammami Algia & Bouri Abdelfatteh, 2018. "The Conditional Relationship between Oil Price Risk and Return Stock Market: a Comparative Study of Advanced and Emerging Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(4), pages 1321-1347, December.
    12. Antti J. Tanskanen & Jani Lukkarinen & Kari Vatanen, 2016. "Random selection of factors preserves the correlation structure in a linear factor model to a high degree," Papers 1604.05896, arXiv.org, revised Dec 2018.
    13. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    14. Algia Hammami & Ameni Ghenimi & Abdelfattah Bouri, 2015. "Relation Between Risk And Return In Tunisian’S Stock Market After The Revolution (During Political Instability)," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 6(1), December.
    15. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    16. Raymond Kan & Guofu Zhou, 1999. "A Critique of the Stochastic Discount Factor Methodology," Journal of Finance, American Finance Association, vol. 54(4), pages 1221-1248, August.
    17. Lars Hornuf & Gül Yüksel, 2022. "The Performance of Socially Responsible Investments: A Meta-Analysis," CESifo Working Paper Series 9724, CESifo.
    18. Zhou, Guofu, 1999. "Security factors as linear combinations of economic variables," Journal of Financial Markets, Elsevier, vol. 2(4), pages 403-432, November.
    19. Pat Wilson & John Okunev & Guy Ta, 1994. "Are Real Estate and Securities Markets Integrated? Some Australian Evidence," Working Paper Series 42, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    20. Zhou, Guofu, 1995. "Small sample rank tests with applications to asset pricing," Journal of Empirical Finance, Elsevier, vol. 2(1), pages 71-93, March.
    21. Lu Zhang, 2019. "Q-factors and Investment CAPM," NBER Working Papers 26538, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:52:y:2018:i:2:d:10.1007_s10614-017-9690-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.