IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v48y2021i1p212-245.html
   My bibliography  Save this article

Non‐Gaussian geostatistical modeling using (skew) t processes

Author

Listed:
  • Moreno Bevilacqua
  • Christian Caamaño‐Carrillo
  • Reinaldo B. Arellano‐Valle
  • Víctor Morales‐Oñate

Abstract

We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with t marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew‐Gaussian process, thus obtaining a process with skew‐t marginal distributions. For the proposed (skew) t process, we study the second‐order and geometrical properties and in the t case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the t process. Moreover we compare the performance of the optimal linear predictor of the t process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australia.

Suggested Citation

  • Moreno Bevilacqua & Christian Caamaño‐Carrillo & Reinaldo B. Arellano‐Valle & Víctor Morales‐Oñate, 2021. "Non‐Gaussian geostatistical modeling using (skew) t processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 212-245, March.
  • Handle: RePEc:bla:scjsta:v:48:y:2021:i:1:p:212-245
    DOI: 10.1111/sjos.12447
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12447
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian Gouriéroux & Alain Monfort & Eric Renault, 2017. "Consistent Pseudo-Maximum Likelihood Estimators," Annals of Economics and Statistics, GENES, issue 125-126, pages 187-218.
    2. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    3. Arellano-Valle, Reinaldo B. & Bolfarine, Heleno, 1995. "On some characterizations of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 25(1), pages 79-85, October.
    4. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    5. Lim, S.C. & Teo, L.P., 2009. "Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1325-1356, April.
    6. Reinaldo Arellano-Valle & Luis Castro & Graciela González-Farías & Karla Muñoz-Gajardo, 2012. "Student-t censored regression model: properties and inference," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 453-473, November.
    7. Gneiting, Tilmann, 2002. "Compactly Supported Correlation Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 493-508, November.
    8. Yun Bai & Jian Kang & Peter X.-K. Song, 2014. "Efficient pairwise composite likelihood estimation for spatial-clustered data," Biometrics, The International Biometric Society, vol. 70(3), pages 661-670, September.
    9. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    10. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    11. David J. Allcroft & Chris A. Glasbey, 2003. "A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 487-498, October.
    12. Moreno Bevilacqua & Carlo Gaetan & Jorge Mateu & Emilio Porcu, 2012. "Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 268-280, March.
    13. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    14. Thaís C. O. Fonseca & Marco A. R. Ferreira & Helio S. Migon, 2008. "Objective Bayesian analysis for the Student-t regression model," Biometrika, Biometrika Trust, vol. 95(2), pages 325-333.
    15. Victor De Oliveira, 2006. "On Optimal Point and Block Prediction in Log‐Gaussian Random Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 523-540, September.
    16. Gao, Xin & Song, Peter X.-K., 2010. "Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1531-1540.
    17. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
    18. Zareifard, Hamid & Jafari Khaledi, Majid, 2013. "Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 16-28.
    19. Yeo, G. F. & Milne, R. K., 1991. "On characterizations of beta and gamma distributions," Statistics & Probability Letters, Elsevier, vol. 11(3), pages 239-242, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    2. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    2. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Carlo Gaetan, 2020. "On modeling positive continuous data with spatiotemporal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    3. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    4. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    5. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    6. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    7. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    8. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    9. Kenne Pagui, E.C. & Salvan, A. & Sartori, N., 2015. "On full efficiency of the maximum composite likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 120-124.
    10. Christian E. Galarza & Tsung-I Lin & Wan-Lun Wang & Víctor H. Lachos, 2021. "On moments of folded and truncated multivariate Student-t distributions based on recurrence relations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 825-850, August.
    11. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    12. Masoud Faridi & Majid Jafari Khaledi, 2022. "The polar-generalized normal distribution: properties, Bayesian estimation and applications," Statistical Papers, Springer, vol. 63(2), pages 571-603, April.
    13. Guella, Jean Carlo & Menegatto, Valdir Antonio & Porcu, Emilio, 2018. "Strictly positive definite multivariate covariance functions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 150-159.
    14. Gustavo Rocha & Reinaldo Arellano-Valle & Rosangela Loschi, 2015. "Maximum likelihood methods in a robust censored errors-in-variables model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 857-877, December.
    15. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    16. E. Castilla & N. Martín & L. Pardo & K. Zografos, 2021. "Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator," Statistical Papers, Springer, vol. 62(2), pages 1003-1041, April.
    17. Paola Bortot & Carlo Gaetan, 2014. "A Latent Process Model for Temporal Extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 606-621, September.
    18. Quan Vu & Yi Cao & Josh Jacobson & Alan R. Pearse & Andrew Zammit-Mangion, 2021. "Discussion on “Competition on Spatial Statistics for Large Datasets”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 614-618, December.
    19. Mahmoudian, Behzad, 2018. "On the existence of some skew-Gaussian random field models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 331-335.
    20. Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:48:y:2021:i:1:p:212-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.