IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9643921.html
   My bibliography  Save this article

Outlier Detection and Correction for Monitoring Data of Water Quality Based on Improved VMD and LSSVM

Author

Listed:
  • Guangpei Sun
  • Peng Jiang
  • Huan Xu
  • Shanen Yu
  • Dong Guo
  • Guang Lin
  • Hui Wu

Abstract

To improve the detection rate and reduce the correction error of abnormal data for water quality, an outlier detection and correction method is proposed based on the improved Variational Mode Decomposition (improved VMD) and Least Square Support Vector Machine (LSSVM) algorithms. The correlation coefficient is introduced, for solving the optimal parameter k of VMD algorithm, and an improved VMD algorithm is obtained. Combined with LSSVM algorithm, the outliers of water quality can be detected and repaired. This method is applied for the detection and correction of water quality monitoring outliers using dissolved oxygen which is retrieved from the water quality monitoring station in Hangzhou, Zhejiang Province, China. The result shows that the improved VMD algorithm is of higher detection rate and lower error rate than those of Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD). The LSSVM algorithm increases the fitting accuracy and decreases correction error in comparison with SVM and BP neural network, which provides important references for the implementation of environmental protection measures.

Suggested Citation

  • Guangpei Sun & Peng Jiang & Huan Xu & Shanen Yu & Dong Guo & Guang Lin & Hui Wu, 2019. "Outlier Detection and Correction for Monitoring Data of Water Quality Based on Improved VMD and LSSVM," Complexity, Hindawi, vol. 2019, pages 1-12, February.
  • Handle: RePEc:hin:complx:9643921
    DOI: 10.1155/2019/9643921
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/9643921.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/9643921.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9643921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Izhar Shah & Taher Abunama & Muhammad Faisal Javed & Faizal Bux & Ali Aldrees & Muhammad Atiq Ur Rehman Tariq & Amir Mosavi, 2021. "Modeling Surface Water Quality Using the Adaptive Neuro-Fuzzy Inference System Aided by Input Optimization," Sustainability, MDPI, vol. 13(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
    2. Camila Borelli Zeller & Celso Rômulo Barbosa Cabral & Víctor Hugo Lachos & Luis Benites, 2019. "Finite mixture of regression models for censored data based on scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 89-116, March.
    3. Víctor H. Lachos & Celso R. B. Cabral & Marcos O. Prates & Dipak K. Dey, 2019. "Flexible regression modeling for censored data based on mixtures of student-t distributions," Computational Statistics, Springer, vol. 34(1), pages 123-152, March.
    4. Wesley Bertoli & Katiane S. Conceição & Marinho G. Andrade & Francisco Louzada, 2018. "On the zero-modified Poisson–Shanker regression model and its application to fetal deaths notification data," Computational Statistics, Springer, vol. 33(2), pages 807-836, June.
    5. Ahad Jamalizadeh & Tsung-I Lin, 2017. "A general class of scale-shape mixtures of skew-normal distributions: properties and estimation," Computational Statistics, Springer, vol. 32(2), pages 451-474, June.
    6. Shuaimin Kang & Guangying Liu & Howard Qi & Min Wang, 2018. "Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 459-477, August.
    7. Fengkai Yang & Haijing Yuan, 2017. "A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 579-597, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9643921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.